Geometry of SU(3)-character varieties of torus knots
Fecha
2023
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Resumen
We describe the geometry of the character variety of representations of the knot
group Γm,n = x, y|xn = ym into the group SU(3), by stratifying the character variety into strata corresponding to totally reducible representations, representations
decomposing into a 2-dimensional and a 1-dimensional representation, and irreducible representations, the latter of two types depending on whether the matrices
have distinct eigenvalues, or one of the matrices has one eigenvalue of multiplicity
2. We describe how the closure of each stratum meets lower strata, and use this
to compute the compactly supported Euler characteristic, and to prove that the
inclusion of the character variety for SU(3) into the character variety for SL(3, C)
is a homotopy equivalence.
Descripción
Palabras clave
Citación
Ángel González-Prieto, Javier Martínez, Vicente Muñoz, Geometry of SU(3)-character varieties of torus knots, Topology and its Applications, Volume 339, Part A, 2023, 108586, ISSN 0166-8641, https://doi.org/10.1016/j.topol.2023.108586
Colecciones
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional