Using the basin entropy to explore bifurcations
Fecha
2023
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Resumen
Bifurcation theory is the usual analytic approach to study the parameter space of a dynamical system. Despite
the great power of prediction of these techniques, fundamental limitations appear during the study of a given
problem. Nonlinear dynamical systems often hide their secrets and the ultimate resource is the numerical
simulation of the equations. This paper presents a method to explore bifurcations by using the basin entropy.
This measure of the unpredictability can detect transformations of phase space structures as a parameter
evolves. We present several examples where the bifurcations in the parameter space have a quantitative effect
on the basin entropy. Moreover, some transformations, such as the basin boundary metamorphoses, can be
identified with the basin entropy but are not reflected in the bifurcation diagram. The correct interpretation
of the basin entropy plotted as a parameter extends the numerical exploration of dynamical systems.
Descripción
This work has been supported by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERDF, EU) under Project No. PID2019-105554GB-I00(MCIN/AEI/10.13039/501100011 033)
Palabras clave
Citación
Alexandre Wagemakers, Alvar Daza, Miguel A.F. Sanjuán, Using the basin entropy to explore bifurcations, Chaos, Solitons & Fractals, Volume 175, Part 1, 2023, 113963, ISSN 0960-0779, https://doi.org/10.1016/j.chaos.2023.113963
Colecciones
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional