Support Vector Method for ARMA System Identification: A Robust Cost Interpretation
Abstract
This paper deals with the application of the Support Vector Method (SVM) methodology to the Auto Regressive and Moving Average (ARMA) linear-system identification problem. The SVM-ARMA algorithm for a single-input single-output transfer function is formulated. The relationship between the SVM coefficients and the residuals, together with the embedded estimation of the autocorrelation function, are presented. Also, the effect of the numerical regularization is used to highlight the robust cost character of this approach. A clinical example is presented for qualitative comparison with the classical Least Squares (LS) methods.
Collections
Los ítems de digital-BURJC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario