Show simple item record

Support Vector Method for ARMA System Identification: A Robust Cost Interpretation

dc.contributor.authorRojo-Álvarez, José Luis
dc.contributor.authorMartínez Ramón, Manel
dc.contributor.authorFigueiras Vidal, Aníbal R
dc.contributor.authorPrado Cumplido, Mario de
dc.contributor.authorArtés Rodríguez, A
dc.date.accessioned2009-07-23T12:04:20Z
dc.date.available2009-07-23T12:04:20Z
dc.date.issued2009-07-23T12:04:20Z
dc.identifier.urihttp://hdl.handle.net/10115/2501
dc.description.abstractThis paper deals with the application of the Support Vector Method (SVM) methodology to the Auto Regressive and Moving Average (ARMA) linear-system identification problem. The SVM-ARMA algorithm for a single-input single-output transfer function is formulated. The relationship between the SVM coefficients and the residuals, together with the embedded estimation of the autocorrelation function, are presented. Also, the effect of the numerical regularization is used to highlight the robust cost character of this approach. A clinical example is presented for qualitative comparison with the classical Least Squares (LS) methods.es
dc.language.isoenes
dc.subjectTelecomunicacioneses
dc.titleSupport Vector Method for ARMA System Identification: A Robust Cost Interpretationes
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subject.unesco3325 Tecnología de las Telecomunicacioneses
dc.subject.unesco3205.01 Cardiologíaes
dc.description.departamentoTeoría de la Señal y Comunicaciones


Files in this item

This item appears in the following Collection(s)

Show simple item record

Los ítems de digital-BURJC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario