dc.contributor.author | Cantisan, Julia | |
dc.contributor.author | Seoane, Jesús M. | |
dc.contributor.author | F. Sanjuan, Miguel A. | |
dc.date.accessioned | 2023-12-12T09:06:22Z | |
dc.date.available | 2023-12-12T09:06:22Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Julia Cantisán et al 2021 J. Phys. Complex. 2 025001 | |
dc.identifier.uri | https://hdl.handle.net/10115/27126 | |
dc.description.abstract | External and internal factors may cause a system's parameter to vary with time before it stabilizes. This drift induces a regime shift when the parameter crosses a bifurcation. Here, we study the case of an infinite dimensional system: a time-delayed oscillator whose time delay varies at a small but non-negligible rate. Our research shows that due to this parameter drift, trajectories from a chaotic attractor tip to other states with a certain probability. This causes the appearance of the phenomenon of transient chaos. By using an ensemble approach, we find a gamma distribution of transient lifetimes, unlike in other non-delayed systems where normal distributions have been found to govern the process. Furthermore, we analyze how the parameter change rate influences the tipping probability, and we derive a scaling law relating the parameter value for which the tipping takes place and the lifetime of the transient chaos with the parameter change rate. | es |
dc.publisher | IOP Publishing | es |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Transient chaos in time-delayed systems subjected to parameter drift | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1088/2632-072X/abd67b | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |