Show simple item record

Transient chaos in time-delayed systems subjected to parameter drift

dc.contributor.authorCantisan, Julia
dc.contributor.authorSeoane, Jesús M.
dc.contributor.authorF. Sanjuan, Miguel A.
dc.date.accessioned2023-12-12T09:06:22Z
dc.date.available2023-12-12T09:06:22Z
dc.date.issued2021
dc.identifier.citationJulia Cantisán et al 2021 J. Phys. Complex. 2 025001
dc.identifier.urihttps://hdl.handle.net/10115/27126
dc.description.abstractExternal and internal factors may cause a system's parameter to vary with time before it stabilizes. This drift induces a regime shift when the parameter crosses a bifurcation. Here, we study the case of an infinite dimensional system: a time-delayed oscillator whose time delay varies at a small but non-negligible rate. Our research shows that due to this parameter drift, trajectories from a chaotic attractor tip to other states with a certain probability. This causes the appearance of the phenomenon of transient chaos. By using an ensemble approach, we find a gamma distribution of transient lifetimes, unlike in other non-delayed systems where normal distributions have been found to govern the process. Furthermore, we analyze how the parameter change rate influences the tipping probability, and we derive a scaling law relating the parameter value for which the tipping takes place and the lifetime of the transient chaos with the parameter change rate.es
dc.publisherIOP Publishinges
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleTransient chaos in time-delayed systems subjected to parameter driftes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1088/2632-072X/abd67bes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution 4.0 International