Show simple item record

A New Robust Approach for Multinomial Logistic Regression With Complex Design Model

dc.contributor.authorCastilla, Elena
dc.contributor.authorChocano, Pedro J.
dc.date.accessioned2023-12-18T14:30:45Z
dc.date.available2023-12-18T14:30:45Z
dc.date.issued2022-06-29
dc.identifier.citationE. Castilla and P. J. Chocano, "A New Robust Approach for Multinomial Logistic Regression With Complex Design Model," in IEEE Transactions on Information Theory, vol. 68, no. 11, pp. 7379-7395, Nov. 2022, doi: 10.1109/TIT.2022.3187063.es
dc.identifier.issn1557-9654
dc.identifier.urihttps://hdl.handle.net/10115/27412
dc.description.abstractRobust estimators and Wald-type tests are developed for the multinomial logistic regression based on φ-divergence measures. We compute the influence function of the proposed estimators and tests and discuss some consequences. Their robustness is illustrated by an extensive simulation study and two real examples.es
dc.language.isoenges
dc.publisherIEEEes
dc.subjectDivergence measureses
dc.subjectInfluence functiones
dc.subjectMultinomial logistic regression modeles
dc.subjectRobustnesses
dc.subjectWald-type testses
dc.titleA New Robust Approach for Multinomial Logistic Regression With Complex Design Modeles
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1109/TIT.2022.3187063es
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses


Files in this item

This item appears in the following Collection(s)

Show simple item record

Los ítems de digital-BURJC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario