Show simple item record

Engineering hollow mesoporous silica nanoparticles to increase cytotoxicity

dc.contributor.authorPerez-Garnes, M
dc.contributor.authorGutiérrez-Salmerón, M
dc.contributor.authorMorales, V
dc.contributor.authorChocarro-Calvo, A
dc.contributor.authorSanz, R
dc.contributor.authorGarcía-Jiménez, C
dc.contributor.authorGarcía-Muñoz, RA
dc.date.accessioned2024-01-26T12:45:22Z
dc.date.available2024-01-26T12:45:22Z
dc.date.issued2020-07
dc.identifier.citationMater Sci Eng C Mater Biol Appl . 2020 Jul:112:110935.es
dc.identifier.issn0928-4931
dc.identifier.urihttps://hdl.handle.net/10115/29032
dc.description.abstractHollow mesoporous silica nanoparticles (HMSNs) consist of a network of cavities confined by mesoporous shells that have emerged as promising tools for drug delivery or diagnostic. The physicochemical properties of HMSNs are dictated by the synthesis conditions but which conditions affect which property and how it impacts on biological interactions is unclear. Here by changing the concentration of the structure-directing agent (SDA), the pH and the ratio between SDA and added salt (NaCl) we determine the effects in size, morphology, surface charge and density or degree of compaction (physicochemical properties) of HMSNs and define their impact on their biological interactions with human colon cancer or healthy cells at the level of cellular uptake and viability. Increased size or density/degree of compaction of HMSNs increases their cytotoxicity. Strikingly, high salt concentrations in the synthesis medium leads to a spiky-shell morphology that provokes nuclear fragmentation and irreversible cell damage turning HMSNs lethal and unveiling intrinsic therapeutic potential. This strategy may open new avenues to design HMSNs nanoarchitectures with intrinsic therapeutic properties without incorporation of external pharmaceutical ingredients.es
dc.language.isoenges
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDrug delivery systemses
dc.subjectDrug-structure directing agent (DSDA)es
dc.subjectEnhanced cytotoxicity;es
dc.subjectHollow-shell mesoporous silica nanoparticles;es
dc.subjectNuclear fragmentation.es
dc.titleEngineering hollow mesoporous silica nanoparticles to increase cytotoxicityes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.msec.2020.110935.es
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional