Show simple item record

Towards the improvement of methane production in CO2 photoreduction using Bi2WO6/TiO2 heterostructures

dc.contributor.authorCollado, L.
dc.contributor.authorGómez-Mendoza, M.
dc.contributor.authorGarcía-Tecedor, M.
dc.contributor.authorOropeza, F.E.
dc.contributor.authorReynal, A,
dc.contributor.authorDurrant, J.R.
dc.contributor.authorSerrano, D.P.
dc.contributor.authorde la Peña O´Shea, V.A.
dc.date.accessioned2024-02-07T11:02:07Z
dc.date.available2024-02-07T11:02:07Z
dc.date.issued2023
dc.identifier.citationaura Collado, Miguel Gomez-Mendoza, Miguel García-Tecedor, Freddy E. Oropeza, Anna Reynal, James R. Durrant, David P. Serrano, Víctor A. de la Peña O’Shea, Towards the improvement of methane production in CO2 photoreduction using Bi2WO6/TiO2 heterostructures, Applied Catalysis B: Environmental, Volume 324, 2023, 122206, ISSN 0926-3373, https://doi.org/10.1016/j.apcatb.2022.122206es
dc.identifier.issn09263373
dc.identifier.urihttps://hdl.handle.net/10115/29870
dc.description.abstractRusselite bismuth tungstate (Bi2WO6) has been widely reported for the photocatalytic degradation and mineralization of a myriad of pollutants as well as organic compounds. These materials present perovskite-like structure with hierarchical morphologies, which confers excellent optoelectronic properties as potentials candidates for photocatalytic solar fuels production. Here, we propose the development of Bi2WO6/TiO2 heterojunctions for CO2 photoreduction, as a promising solution to produce fuels, alleviate global warming and tackle fossil fuel shortage. Our results show an improvement of the photocatalytic activity of the heterojunctions compared to the pristine semiconductors. Near Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS) experiments reveals a preferential CO2 adsorption over TiO2. On the other hand, transient absorption spectroscopy measurements show that the charge transfer pathway in Bi2WO6/TiO2 hybrids leads to longer-lived photogenerated carriers in spatially separated redox active sites, which favor the reduction of CO2 into highly electron demanding fuels and chemicals, such as CH4 and C2H6.es
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectBi2WO6/TiO2 heterojunctiones
dc.subjectCH4 productiones
dc.subjectCharge dynamics studieses
dc.subjectCO2 photoreductiones
dc.titleTowards the improvement of methane production in CO2 photoreduction using Bi2WO6/TiO2 heterostructureses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.apcatb.2022.122206es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 4.0 International