Show simple item record

Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction

dc.contributor.authorCollado, L.
dc.contributor.authorReynal, A.
dc.contributor.authorFresno, F.
dc.contributor.authorBarawi, M.
dc.contributor.authorEscudero, C.
dc.contributor.authorPérez-Dieste, V.
dc.contributor.authorCoronado, J.M.
dc.contributor.authorSerrano, D.P.
dc.contributor.authorDurrant, J.R.
dc.contributor.authorde la Peña O´Shea, V.A.
dc.date.accessioned2024-02-07T11:09:59Z
dc.date.available2024-02-07T11:09:59Z
dc.date.issued2018
dc.identifier.issn20411723
dc.identifier.urihttps://hdl.handle.net/10115/29876
dc.description.abstractSunlight plays a critical role in the development of emerging sustainable energy conversion and storage technologies. Lightinduced CO2 reduction by artificial photosynthesis is one of the cornerstones to produce renewable fuels and environmentally friendly chemicals. Interface interactions between plasmonic metal nanoparticles and semiconductors exhibit improved photoactivities under a wide range of the solar spectrum. However, the photo-induced charge transfer processes and their influence on photocatalysis with these materials are still under debate, mainly due to the complexity of the involved routes occurring at different timescales. Here, we use a combination of advanced in situ and time-resolved spectroscopies covering different timescales, combined with theoretical calculations, to unravel the overall mechanism of photocatalytic CO2 reduction by Ag/TiO2 catalysts. Our findings provide evidence of the key factors determining the enhancement of photoactivity under ultraviolet and visible irradiation, which have important implications for the design of solar energy conversion materials.es
dc.language.isoenges
dc.publisherNature Publishing Groupes
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectcarbon dioxidees
dc.subjectfueles
dc.subjectmetal nanoparticlees
dc.subjectalternative energyes
dc.subjectcarbon dioxide enrichmentes
dc.subjectcatalysises
dc.subjectcatalystes
dc.subjectdetection methodes
dc.subjectinorganic compoundes
dc.subjectmetales
dc.subjectphotosynthesises
dc.subjectreductiones
dc.subjectsolar poweres
dc.subjectsolar radiationes
dc.subjectultraviolet radiationes
dc.subjectabsorption spectroscopyes
dc.subjectelectron transportes
dc.subjectimpedance spectroscopyes
dc.subjectlightes
dc.subjectlight absorptiones
dc.subjectnear ambient pressure X ray photoelectrones
dc.subjectspectroscopyes
dc.subjectphotocatalysises
dc.subjectphotodynamicses
dc.subjectphotoreductiones
dc.subjectphotosynthesises
dc.subjectrenewable energyes
dc.subjectsolar energyes
dc.subjectsunlightes
dc.subjectsurface areaes
dc.subjectsurface plasmon resonancees
dc.subjecttime resolved spectroscopyes
dc.subjecttransient absorption spectroscopyes
dc.subjectultraviolet irradiationes
dc.subjectultraviolet radiationes
dc.subjectX ray photoemission spectroscopyes
dc.titleUnravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreductiones
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1038/s41467-018-07397-2es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution 4.0 International