Analysis of the Sanger Hebbian Neural Network
Abstract
In this paper, the behavior of the Sanger hebbian artificial neural networks is analyzed. Hebbian neural networks are employed in communications and signal processing applications, among others, due to their capability to implement Principal Component Analysis (PCA). Different improvements over the original model due to Oja have been developed in the last two decades. Among them, Sanger model was designed to directly provide the eigenvectors of the correlation matrix. The behavior of these models has been traditionally considered on a continuous-time formulation whose validity is justified via some analytical procedures that presume, among other hypotheses, an specific asymptotic behavior of the learning gain. In practical applications, these assumptions cannot be guaranteed. This paper addresses the study of a deterministic discrete-time (DDT) formulation that characterizes the average evolution of the net, preserving the discrete-time form of the original network and gathering a more realistic behavior of the learning gain. The dynamics behavior Sanger model is analyzed in this more realistic context. The results thoroughly characterize the relationship between the learning gain and the eigenvalue structure of the correlation matrix.
Description
Utilización de Redes Neuronales de Sanger para el Análisis de Componentes Principales de forma adaptativa según los datos de a procesar. En Análisis de Componente Principales es un algoritmo básico en la ciencia del dato, comunicaciones y procesamiento de señal. Se realiza el análisis dinámico de estas Redes Neuronales aplicando escalas temporales y se llega a establecer una relación entre el dato a procesar y la velocidad de convergencia.
Collections
Los ítems de digital-BURJC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario