Show simple item record

Effect of green infrastructure on restoration of pollination networks and plant performance in semi-natural dry grasslands across Europe

dc.contributor.authorTraveset, Ana
dc.contributor.authorLara-Romero, Carlos
dc.contributor.authorSantamaría, Silvia
dc.contributor.authorEscribano Avila, Gema
dc.contributor.authorBullock, James M
dc.contributor.authorHonnay, Oliver
dc.contributor.authorHofftman, Danny AP
dc.contributor.authorKimberley, Adam
dc.contributor.authorKrickl, Patricia
dc.contributor.authorPlue, Jan
dc.contributor.authorPoschlod, Peter
dc.contributor.authorCousins, Sara AO
dc.date.accessioned2024-07-05T10:35:08Z
dc.date.available2024-07-05T10:35:08Z
dc.date.issued2024-02-25
dc.identifier.citationTraveset, A., Lara-Romero, C., Santamaría, S., Escribano-Ávila, G., Bullock, J. M., Honnay, O., Hooftman, D. A. P., Kimberley, A., Krickl, P., Plue, J., Poschlod, P., & Cousins, S. A. O. (2024). Effect of green infrastructure on restoration of pollination networks and plant performance in semi-natural dry grasslands across Europe. Journal of Applied Ecology, 61, 1015–1028. https://doi.org/10.1111/1365-2664.14592es
dc.identifier.issn1365-2664 (online)
dc.identifier.issn0021-8901 (print)
dc.identifier.urihttps://hdl.handle.net/10115/36893
dc.description.abstract1. Agricultural intensification, afforestation and land abandonment are major drivers of biodiversity loss in semi-natural grasslands across Europe. Reversing these losses requires the reinstatement of plant-animal interactions such as pollination. Here we assessed the differences in species composition and patterns of plant-pollinator interactions in ancient and restored grasslands and how these patterns are influenced by landscape connectivity, across three European regions (Belgium, Germany and Sweden). 2. We evaluated the differences in pollinator community assemblage, abundance, and interaction network structure between 24 ancient and restored grasslands. We then assessed the effect of surrounding landscape functional connectivity (i.e. green infrastructure, GI) on these variables and tested possible consequences on the reproduction of two model plants, Lotus corniculatus and Salvia pratensis. 3. Neither pollinator richness nor species composition differed between ancient and restored grasslands. A high turnover of interactions across grasslands was detected but was mainly due to replacement of pollinator and plant species. The impact of grassland restoration was consistent across various pollinator functional groups, whereas the surrounding GI had differential effects. Notably, bees, butterflies, beetles, and dipterans (excluding hoverflies) exhibited the most significant responses to GI variations. Interestingly, networks in restored grasslands were more specialised (i.e. less functionally redundant) than in ancient ones and also showed a higher number of insect visits to habitat-generalist plant species. Landscape connectivity had a similar effect, with habitat-specialist plant species receiving fewer visits at higher GI values. 4. Fruit set in S. pratensis and L. corniculatus was unaffected by grassland type or GI. However, the fruit set in the specialist S. pratensis increased with the number of pollinator visits, indicating a positive correlation between pollinator activity and reproductive success in this particular species.. 5. Synthesis and applications. Our findings provide evidence of the necessity to enhance ecosystem functions while avoiding biotic homogenization. Restoration programs should aim at increasing landscape connectivity which influences plant communities, pollinator assemblages, and their interaction patterns. To avoid generalist species taking over from specialists in restored grasslands, we suggest reinforcing the presence of specialist species in the latter, for instance by means of introductions, as well as increasing the connectivity to source populations.es
dc.language.isoenges
dc.publisherBritish Ecological Societyes
dc.rightsAttribution 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectFunctional connectivityes
dc.subjectgrassland restorationes
dc.subjecthabitat qualityes
dc.subjectland-use changees
dc.subjectplant-pollinator interactionses
dc.subjectplant reproductive successes
dc.subjectspecies richnesses
dc.subjecttrophic interactionses
dc.titleEffect of green infrastructure on restoration of pollination networks and plant performance in semi-natural dry grasslands across Europees
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1111/1365-2664.14592es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution 4.0 International