dc.contributor.author | Paniego, Sergio | |
dc.contributor.author | Calvo-Palomino, Roberto | |
dc.contributor.author | Cañas, JoséMaría | |
dc.date.accessioned | 2024-07-17T09:24:23Z | |
dc.date.available | 2024-07-17T09:24:23Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Sergio Paniego, Roberto Calvo-Palomino, JoséMaría Cañas, Enhancing end-to-end control in autonomous driving through kinematic-infused and visual memory imitation learning, Neurocomputing, Volume 600, 2024, 128161, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2024.128161 | es |
dc.identifier.uri | https://hdl.handle.net/10115/38197 | |
dc.description | This work is supported by (GAIA) Gestión integral para la prevención, extinción y reforestación debido a incendios forestales, Spain, Proyectos de I+D en líneas estratégicas en colaboración entre organismos de investigación y difusión de conocimientos TRANSMISIONES 2023, Spain. Ref
PLEC2023-010303
(2024–2026) by Agencia Estatal de Investigación de España, Spain . | es |
dc.description.abstract | This paper presents an exploration, study, and comparison of various alternatives to enhance the capabilities
of an end-to-end control system for autonomous driving based on imitation learning by adding visual memory
and kinematic input data to the deep learning architectures that govern the vehicle. The experimental
comparison relies on fundamental error metrics (MAE, MSE) during the offline assessment, supplemented
by several external complementary fine-grain metrics based on the behavior of the ego vehicle at several
urban test scenarios in the CARLA reference simulator in the online evaluation. Our study focuses on a
lane-following application using different urban scenario layouts and visual bird-eye-view input. The memory
addition involves architectural modifications and different sensory input types. The kinematic data integration
is managed with a modified input. The experiments encompass both typical driving scenarios and extreme
never-seen conditions. Additionally, we conduct an ablation study examining various memory lengths and
densities. We prove experimentally that incorporating visual memory capabilities and kinematic input data
makes the driving system more robust and able to handle a wider range of challenging situations, including
those not encountered during training, in terms of reduction of collisions and speed self-regulation, resulting
in a 75% enhancement. All the work we present here, including model architectures, trained model weights,
comparison tool, and the dataset, is open-source, facilitating replication and extension of our findings. | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Enhancing end-to-end control in autonomous driving through kinematic-infused and visual memory imitation learning Author links open overlay panel | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1016/j.neucom.2024.128161 | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |