Validation of an IMU-based Gait Analysis Method for Assessment of Fall Risk Against Traditional Methods

Resumen

Falls are a severe problem in older adults, often resulting in severe consequences such as injuries or loss of consciousness. It is crucial to screen fall risk in order to prescribe appropriate therapies that can potentially prevent falls. Identifying individuals who have experienced falls in the past, commonly known as fallers, is used to evaluate fall risk, as a prior fall indicates a higher likelihood of future falls. The methods that have the most support from evidence are Gait Speed (GS) and Time Up and Go (TUG), which use specific cut-off values to evaluate the fall risk. There have been proposals for alternative methods that use wearable sensor technology to improve fall risk assessment. Although these technological alternatives are promising, further research is necessary to validate their use in clinical settings. In this study, we propose a method for identifying fallers based on a Support Vector Machine (SVM) classifier. The inputs for the classifier are the gait parameters obtained from a 30-minute walk recorded using an Inertial Measurement Unit (IMU) placed at the foot of patients. We validated our proposed method using a sample of 157 patients aged over 70 years. Our findings indicate significant differences (p< 0.05) in stride speed, clearance, angular velocity, acceleration, and coefficient of variability among steps between fallers and non-fallers. The proposed method demonstrates the its potential to classify fallers with an accuracy of [79.6]% , slightly outperforming the GS method which provides an accuracy of [77.0]% , and also overcomes its dependency on the cut-off speed to determine fallers. This method could be valuable in detecting fallers during long-term monitoring that does not require periodic evaluations in a clinical setting

Descripción

Citación

S. García-de-Villa et al., "Validation of an IMU-based Gait Analysis Method for Assessment of Fall Risk Against Traditional Methods," in IEEE Journal of Biomedical and Health Informatics, doi: 10.1109/JBHI.2024.3434973
license logo
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional