Adhesivos nanorreforzados de base epoxi para la unión de laminados de fibra de carbono
Fecha
2011
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Rey Juan Carlos
Resumen
Las uniones adhesivas son una interesante alternativa a las uniones mecánicas en la
construcción de estructuras de material compuesto de matriz polimérica con fibra de
carbono. Entre las diferentes familias de adhesivos, las resinas epoxi son una de las más
utilizadas para unir materiales compuestos de matriz epoxídica, por su elevada
resistencia mecánica, química y térmica. Sus principales limitaciones son su elevada
fragilidad y la absorción de agua en ambientes húmedos. Además, en determinadas
aplicaciones, su carácter aislante eléctrico puede ser una limitación.
En este trabajo, se propone la utilización de nanofibras y nanotubos de carbono para
mejorar estos comportamientos. El principal objetivo es incrementar la energía de
fractura de uniones adhesivas de laminados epoxi/fibra de carbono utilizando adhesivos
nanorreforzados con una conductividad eléctrica suficiente para permitir la disipación
de cargas electrostáticas, sin perjudicar la resistencia del adhesivo y las uniones
adhesivas. Se ha comprobado que la adición de un 0,25 % en masa de nanotubos de
carbono provoca un incremento de la energía de fractura en modo I de hasta el 40 %,
disminuyendo la resistividad eléctrica 7 órdenes de magnitud. En el caso del material
compuesto reforzado con nanofibras, con un 0,5 % en masa se consigue aumentar la
energía de fractura hasta un 25 % con un descenso de resistividad de 4 órdenes de
magnitud.
Además, se ha comprobado que la adición de estos nanorrefuerzos a la resina epoxi
mejora su durabilidad, reduciendo tanto la cantidad máxima de agua absorbida como la
pérdida de propiedades mecánicas tras un proceso de envejecimiento hidrotérmico.
Por otra parte, se han analizado la influencia de diferentes tratamientos superficiales
(tejido pelable, granallado y plasma) aplicados a los laminados en las propiedades de
las uniones adhesivas resultantes. El tratamiento con plasma atmosférico da lugar a la
mayor resistencia mientras que con el granallado se consigue la mayor energía de
fractura. La utilización de un tejido pelable mejora la durabilidad de las uniones, pero
provoca un modo de fallo adhesivo, que es el que se pretende evitar con la aplicación de
tratamientos superficiales.
Adhesive joints are a very interesting alternative to mechanical joints in the building of structures based on carbon fibre reinforced polymers. Among the different families of adhesives, epoxies are one of most used for joining epoxy matrix composites, because of their high mechanical, chemical and thermal resistance. Their main drawbacks are high brittleness and the water uptake in humid environments. Also, in some applications, their electric insulating character may be a limitation. In this work, the use of carbon nanofibres and nanotubes is proposed in order to improve these behaviours. The main objective is to increase the fracture energy of carbon fibre/epoxy laminate joints using nanoreinforced adhesives with electrical conductivity high enough to allow the dissipation of electrostatic charges without damaging the strength of the adhesive and the adhesive joints. It was shown that the addition of 0.25 wt.% carbon nanotubes increases the mode I fracture energy up to 40 %, decreasing the electrical resistivity by 7 orders of magnitude. In the case of the epoxy resin reinforced with carbon nanofibres, adding 0.5 wt% leads to an increase of the fracture energy up to 25 % with a decrease of the electrical resistivity of 4 orders of magnitude. Also, it was proven that the addition of these nanofillers to the epoxy resin improves its durability, reducing the amount of absorbed water and the loss of mechanical properties after a process of hydrothermal ageing. On the other hand, it was analyzed the influence of different surface treatments (peel ply, grit blasting and plasma) applied to the substrates on the properties of the resulting adhesive joints. The atmospheric plasma treatment provides the highest strength while grit blasting leads to the highest fracture energy. The use of a peel ply improves the durability of the joints, but the joints with this treatment fail in adhesive mode, which is the one that should be avoided.
Adhesive joints are a very interesting alternative to mechanical joints in the building of structures based on carbon fibre reinforced polymers. Among the different families of adhesives, epoxies are one of most used for joining epoxy matrix composites, because of their high mechanical, chemical and thermal resistance. Their main drawbacks are high brittleness and the water uptake in humid environments. Also, in some applications, their electric insulating character may be a limitation. In this work, the use of carbon nanofibres and nanotubes is proposed in order to improve these behaviours. The main objective is to increase the fracture energy of carbon fibre/epoxy laminate joints using nanoreinforced adhesives with electrical conductivity high enough to allow the dissipation of electrostatic charges without damaging the strength of the adhesive and the adhesive joints. It was shown that the addition of 0.25 wt.% carbon nanotubes increases the mode I fracture energy up to 40 %, decreasing the electrical resistivity by 7 orders of magnitude. In the case of the epoxy resin reinforced with carbon nanofibres, adding 0.5 wt% leads to an increase of the fracture energy up to 25 % with a decrease of the electrical resistivity of 4 orders of magnitude. Also, it was proven that the addition of these nanofillers to the epoxy resin improves its durability, reducing the amount of absorbed water and the loss of mechanical properties after a process of hydrothermal ageing. On the other hand, it was analyzed the influence of different surface treatments (peel ply, grit blasting and plasma) applied to the substrates on the properties of the resulting adhesive joints. The atmospheric plasma treatment provides the highest strength while grit blasting leads to the highest fracture energy. The use of a peel ply improves the durability of the joints, but the joints with this treatment fail in adhesive mode, which is the one that should be avoided.
Descripción
Tesis Doctoral leída en la Universidad Rey Juan Carlos en 2011. Directores de la Tesis: Alejandro Ureña Fernández y Silvia González Prolongo
Palabras clave
Citación
Colecciones
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España