Optimization of technical indicators in real time with multiobjective evolutionary algorithms

dc.contributor.authorSoltero, Francisco José
dc.contributor.authorBodas, Diego
dc.contributor.authorFernández, Pablo
dc.contributor.authorHidalgo, José Ignacio
dc.date.accessioned2024-01-31T09:43:21Z
dc.date.available2024-01-31T09:43:21Z
dc.date.issued2012-07-07
dc.description.abstractTechnical analysis uses technical indicators to identify changes in market trend. These are composed by a set of parameters and rules, whose values try to determine the future movements of the assets. This paper addresses the optimization of these values depending on the current market, allowing better returns with less risk. The use of Multi-objective Evolutionary Algorithms (MOEAs) is proposed in this work to obtain the best parameter values in real time belonging to a collection of indicators that will help in the buying and selling of shares. Unlike other previous approaches, the necessity of repeating the parameters optimization process each time a new data enters the system is justified, searching for the best adjustment in every moment. This technique can greatly improve the results of Buy & Hold (B & H) strategy even operating daily. This statement will be demonstrated by comparing the results to those presented in the literature.es
dc.identifier.citation@inproceedings{soltero2012optimization, title={Optimization of technical indicators in real time with multiobjective evolutionary algorithms}, author={Soltero, Francisco J and Bodas-Sagi, Diego J and Fern{\'a}ndez-Blanco, Pablo and Hidalgo, J Ignacio and Fern{\'a}ndez-de-Vega, Francisco}, booktitle={Proceedings of the 14th annual conference companion on Genetic and evolutionary computation}, pages={1535--1536}, year={2012} }es
dc.identifier.doi10.1145/2330784.2331033es
dc.identifier.isbn978-1-4503-1178-6
dc.identifier.urihttps://hdl.handle.net/10115/29332
dc.language.isoenges
dc.publisherAssociation for Computing Machinery New York, NY, United States.es
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.subjectAlgoritmos evolutivos, optimización, indicadores bursátileses
dc.titleOptimization of technical indicators in real time with multiobjective evolutionary algorithmses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Gecco2012.pdf
Tamaño:
517.6 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo de revista

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: