From classification to visualization: a two way trip

dc.contributor.authorCuesta, Marina
dc.contributor.authorMartín de Diego, Isaac
dc.contributor.authorLancho, Carmen
dc.contributor.authorAceña, Víctor
dc.contributor.authorM. Moguerza, Javier
dc.date.accessioned2024-09-02T07:32:26Z
dc.date.available2024-09-02T07:32:26Z
dc.date.issued2021
dc.description.abstractHigh Dimensional Data (HDD) is one of the biggest challenges in Data Science arising from Big Data. The application of dimensionality reduction techniques over HDD allows visualization and, thus, a better problem understanding. In addition, these techniques also can enhance the performance of Machine Learning (ML) algorithms while increasing the explanatory power. This paper presents an automatic method capable of obtaining an adequate representation of the data, given a previously trained ML model. Likewise, an automatic method is introduced to bring a Support Vector Machine (SVM) model based on an adequate representation of the data. Both methods provide an Explanaible Machine Learning procedure. The proposal is tested on several data sets providing promising results. It significantly eases the visualization and understanding task to the data scientist when a ML model has already been trained, as well as the ML selection parameters when a reduced representation of data has been achieved.es
dc.identifier.citationCuesta, M., Martín de Diego, I., Lancho, C., Aceña, V., M. Moguerza, J. (2021). From Classification to Visualization: A Two Way Trip. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2021. IDEAL 2021. Lecture Notes in Computer Science(), vol 13113. Springer, Cham. https://doi.org/10.1007/978-3-030-91608-4_29es
dc.identifier.doi10.1007/978-3-030-91608-4_29es
dc.identifier.isbn978-3-030-91607-7
dc.identifier.urihttps://hdl.handle.net/10115/39273
dc.publisherSpringer International Publishinges
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccesses
dc.subjectHigh dimensional dataes
dc.subjectVisualizationes
dc.subjectClassificationes
dc.subjectExplanaible machine learninges
dc.titleFrom classification to visualization: a two way tripes
dc.typeinfo:eu-repo/semantics/bookPartes

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
From_classification_to_visualization.pdf
Tamaño:
871.7 KB
Formato:
Adobe Portable Document Format
Descripción:
última revisión de artículo

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: