Ladder operators for generalized Zernike or disk polynomials.

dc.contributor.authorMarriaga, Misael E.
dc.date.accessioned2025-05-12T09:32:35Z
dc.date.available2025-05-12T09:32:35Z
dc.date.issued2025-04-28
dc.description.abstractThe aim of this work is to report on several ladder operators for generalized Zernike polynomials which are orthogonal polynomials on the unit disk $\mathbf{D}\,=\,\{(x,y)\in \mathbb{R}^2: \; x^2+y^2\leqslant 1\}$ with respect to the weight function $W_{\mu}(x,y)\,=\,(1-x^2-y^2)^{\mu}$ where $\mu>-1$. These polynomials can be expressed in terms of the univariate Jacobi polynomials and, thus, we start by deducing several ladder operators for the Jacobi polynomials. Due to the symmetry of the disk and the weight function $W_{\mu}$, it turns out that it is more convenient to use complex variables $z\,=\, x+iy$ and $\bar{z}\,=\,x-iy$. Indeed, this allows us to systematically use the univariate ladder operators to deduce analogous ones for the complex generalized Zernike polynomials. Some of these univariate and bivariate ladder operators already appear in the literature. However, to the best of our knowledge, the proofs presented here are new. Lastly, we illustrate the use of ladder operators in the study of the orthogonal structure of some Sobolev spaces.
dc.identifier.citationMarriaga, M.E. Ladder operators for generalized Zernike or disk polynomials. Bol. Soc. Mat. Mex. 31, 68 (2025). https://doi.org/10.1007/s40590-025-00748-2
dc.identifier.doi10.1007/s40590-025-00748-2
dc.identifier.urihttps://hdl.handle.net/10115/85697
dc.language.isoen
dc.publisherSpringer
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.subjectDisk polynomials
dc.subjectOrthogonal polynomials
dc.subjectLadder operators
dc.titleLadder operators for generalized Zernike or disk polynomials.
dc.typeArticle

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Marriaga_2025_04_04.pdf
Tamaño:
348.34 KB
Formato:
Adobe Portable Document Format