An approach to detect user behaviour anomalies within identity federations

dc.contributor.authorMartín, Alejandro G.
dc.contributor.authorBeltrán, Marta
dc.contributor.authorFernández-Isabel, Alberto
dc.contributor.authorMartín de Diego, Isaac
dc.date.accessioned2022-02-09T12:16:23Z
dc.date.available2022-02-09T12:16:23Z
dc.date.issued2021
dc.description.abstractUser and Entity Behaviour Analytics (UEBA) mechanisms rely on statistical techniques and Machine Learning to determine when a significant deviation from patterns or trends established as a standard for users and entities is occurring. These mechanisms are beneficial within cybersecurity contexts because they allow managers and administrators to have early alerts warning about potential security incidents. This paper proposes the utilisation of UEBA to improve the security of Federated Identity Management (FIM) solutions. The proposed UEBA workflow allows Relying Parties within identity federations to build a session fingerprint characterising each user’s behaviour from available information. Furthermore, it enables anomaly detection based on this fingerprint, integrating raised alerts within current identity management specifications. The proposed workflow is validated and evaluated in a real use case based on a web chat application using OpenID Connect for identity management.es
dc.description.sponsorshipS0167404821001802es
dc.identifier.citationAlejandro G. Martín, Marta Beltrán, Alberto Fernández-Isabel, Isaac Martín de Diego, An approach to detect user behaviour anomalies within identity federations, Computers & Security, Volume 108, 2021, 102356, ISSN 0167-4048, https://doi.org/10.1016/j.cose.2021.102356es
dc.identifier.doi10.1016/j.cose.2021.102356es
dc.identifier.issn0167-4048
dc.identifier.urihttp://hdl.handle.net/10115/18638
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAnomaly detectiones
dc.subjectBehavioural fingerprintes
dc.subjectFederated identity managementes
dc.subjectMachine learninges
dc.subjectUser and entity behaviour analyticses
dc.titleAn approach to detect user behaviour anomalies within identity federationses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1-s2.0-S0167404821001802-main.pdf
Tamaño:
1.66 MB
Formato:
Adobe Portable Document Format
Descripción: