Transient chaos in time-delayed systems subjected to parameter drift

Resumen

External and internal factors may cause a system's parameter to vary with time before it stabilizes. This drift induces a regime shift when the parameter crosses a bifurcation. Here, we study the case of an infinite dimensional system: a time-delayed oscillator whose time delay varies at a small but non-negligible rate. Our research shows that due to this parameter drift, trajectories from a chaotic attractor tip to other states with a certain probability. This causes the appearance of the phenomenon of transient chaos. By using an ensemble approach, we find a gamma distribution of transient lifetimes, unlike in other non-delayed systems where normal distributions have been found to govern the process. Furthermore, we analyze how the parameter change rate influences the tipping probability, and we derive a scaling law relating the parameter value for which the tipping takes place and the lifetime of the transient chaos with the parameter change rate.

Descripción

Palabras clave

Citación

Julia Cantisán et al 2021 J. Phys. Complex. 2 025001
license logo
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International