Reflector design for the optimization of photoactivated processes in tubular reactors for water treatment

Resumen

Photoactivated advanced oxidation processes have excellent performance in removing recalcitrant pollutants from water. However, the high operating cost associated with the energy consumption of UV lamps is a big drawback. In this work, the design and optimization of the reflector in a tube-in-tube membrane photoreactor were carried out using a ray tracing methodology to maximize the light deployed to the reactor. Simulations were carried out using different lamps/reactor arrangements with 1, 2 and 3-sided flat reflectors and with circular and parabolic geometries. Results showed that direct radiation is maximized when the distance reactorlamps is minimized, increasing optical efficiency. On the other hand, it was observed that for the flat reflectors, the closer the furthest point of the reflector to the center of the reactor, the higher optical efficiency is achieved due to the reduction in the number of bouncing rays in the reflector. In the case of parabolic geometries, some additional considerations are necessary, since not only the distance at which the reflector is placed matters, but also its geometrical focus. The best performance is achieved for those in which the distance from the furthest point of the reflector to the center of the reactor was lower and the lamps placed near the focus of the parabola. For the studied reflector geometries, the calculated optical efficiencies when using anodized aluminum were 46.1%, 56.5%, 60.0%, 41.8%, and 65.9% for reflectors of 1, 2, and 3 sides, cylinder, and parabola, respectively. Model predictions were successfully validated using experimental ferrioxalate actinometry data, confirming the huge potential of this simple simulation methodology for photoreactor design purposes.

Descripción

The authors gratefully acknowledge the financial support of the Spanish State Research Agency (AEI) and the Spanish Ministry of Science and Innovation through the project AQUAENAGRI (PID2021-126400OB-C32) and Comunidad de Madrid through the program REMTAVARES (P2018/EMT-4341). This work was also financially supported by LA/P/0045/2020 (ALiCE), UIDB/50020/2020 and UIDP/50020/2020 (LSRE-LCM), funded by national funds through FCT/MCTES (PIDDAC). The authors would like to thank the EU and Bundesministerium für Bildung und Forschung, Germany, Ministero dell’Università e della Ricerca, Italy, Agencia Estatal de Investigación, Spain, Fundação para a Ciência e a Tecnologia, Portugal, Norges forskningsråd, Norway, Water Research Commission, South Africa for funding, in the frame of the collaborative international consortium SERPIC financed under the ERA-NET AquaticPollutants Joint Transnational Call (GA No. 869178). This ERA-NET is an integral part of the activities developed by the Water, Oceans and AMR Joint Programming Initiatives. Miguel Martín-Sómer also acknowledges Spanish MEFP for his Jose Castillejo grant (CAS21/00014).

Citación

M. Martín-Sómer, J. Moreira, Carla Santos, Ana I. Gomes, J. Moreno-SanSegundo, Vítor J.P. Vilar, J. Marugán, Reflector design for the optimization of photoactivated processes in tubular reactors for water treatment, Journal of Environmental Chemical Engineering, Volume 11, Issue 5, 2023, 110609, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2023.110609
license logo
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional