Some variants of integer multiplication

Fecha

2023-09-23

Título de la revista

ISSN de la revista

Título del volumen

Editor

MDPI

Resumen

In this paper, we will explore alternative varieties of integer multiplication by modifying the product axiom of Dedekind–Peano arithmetic (PA). In addition to studying the elementary properties of the new models of arithmetic that arise, we will see that the truth or falseness of some classical conjectures will be equivalently in the new ones, even though these models have non-commutative and non-associative product operations. To pursue this goal, we will generalize the divisor and prime number concepts in the new models. Additionally, we will explore various general number properties and project them onto each of these new structures. This fact will enable us to demonstrate that indistinguishable properties on PA project different properties within a particular model. Finally, we will generalize the main idea and explain how each integer sequence gives rise to a unique arithmetic structure within the integers.

Descripción

Se proponen nuevas formas de multiplicación de números enteros y se estudian las aritméticas que aparecen así como las relaciones con la aritmética usual.

Citación

de Vega FJ. Some Variants of Integer Multiplication. Axioms. 2023; 12(10):905.
license logo
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional