Deep Learning-Based Gender Classification by Training With Fake Data

dc.contributor.authorOulad-Kaddour, Mohamed
dc.contributor.authorHaddadou, Hamid
dc.contributor.authorConde-Vilda, Cristina
dc.contributor.authorPalacios-Alonso, Daniel
dc.contributor.authorBenatchba, Karima
dc.contributor.authorCabello, Enrique
dc.date.accessioned2024-07-04T07:08:18Z
dc.date.available2024-07-04T07:08:18Z
dc.date.issued2023-10-27
dc.description.abstractGender classification of human faces is a trending topic and a remarkable biometric task. This research area has useful applications in several fields, such as automated border control (ABC) and forensic work. There are many approaches to gender classification in the literature; the classical approaches usually use real faces. Although good performances have been achieved, data collection remains a problem. Additionally, the privacy of individuals must be included in many existing works. These drawbacks can be overcome by using fake faces. Recently, the creation of a robust fake face corpus using machine learning has become possible. Our main contribution in the present paper is to experimentally investigate the ability of an artificial deepfake corpus to be a substitute for real corpora in facial gender classification tasks.We propose a deep learning-based approach using convolutional neural networks trained with fake faces and tested on real faces. By exploiting artificial faces, data collection obstacles are resolved for the training step, and privacy is highly preserved. Four classifiers based on popular convolutional neural network architectures were implemented. In the test phase, we used faces of real identities extracted from well-known experimental databases such as Face Recognition Technology (FERET), Faculdade de Engenharia Industrial (FEI) faces, Face Recognition and Artificial Vision (FRAV) and Labeled Faces in theWild (LFW). The results achieved are very promising. We obtained high accuracy rates and low EER scores. They are similar to those of research works using real faces. As a result of this work, we propose a gender-labeled deepfake facial dataset containing more than 200k deepfake corpora that we will make available upon request for research purposes.es
dc.identifier.citationM. Oulad-Kaddour, H. Haddadou, C. C. Vilda, D. Palacios-Alonso, K. Benatchba and E. Cabello, "Deep Learning-Based Gender Classification by Training With Fake Data," in IEEE Access, vol. 11, pp. 120766-120779, 2023, doi: 10.1109/ACCESS.2023.3328210es
dc.identifier.doi10.1109/ACCESS.2023.3328210es
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/10115/36691
dc.language.isoenges
dc.publisherIEEEes
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAdversarial neural networkses
dc.subjectConvolutional neural networkses
dc.subjectDeep learninges
dc.subjectFake faceses
dc.subjectGender classificationes
dc.titleDeep Learning-Based Gender Classification by Training With Fake Dataes
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Deep_Learning-Based_Gender_Classification_by_Training_With_Fake_Data.pdf
Tamaño:
1.86 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: