3D human pose estimation from depth maps using a deep combination of poses

dc.contributor.authorMarín-Jiménez, Manuel J.
dc.contributor.authorRomero-Ramirez, Francisco J.
dc.contributor.authorMuñoz-Salinas, Rafael
dc.contributor.authorMedina-Carnicer, Rafael
dc.date.accessioned2024-12-02T11:08:18Z
dc.date.available2024-12-02T11:08:18Z
dc.date.issued2018-08
dc.description.abstractMany real-world applications require the estimation of human body joints for higher-level tasks as, for example, human behaviour understanding. In recent years, depth sensors have become a popular approach to obtain three-dimensional information. The depth maps generated by these sensors provide information that can be employed to disambiguate the poses observed in two-dimensional images. This work addresses the problem of 3D human pose estimation from depth maps employing a Deep Learning approach. We propose a model, named Deep Depth Pose (DDP), which receives a depth map containing a person and a set of predefined 3D prototype poses and returns the 3D position of the body joints of the person. In particular, DDP is defined as a ConvNet that computes the specific weights needed to linearly combine the prototypes for the given input. We have thoroughly evaluated DDP on the challenging ‘ITOP’ and ‘UBC3V’ datasets, which respectively depict realistic and synthetic samples, defining a new state-of-the-art on themes
dc.identifier.citationManuel J. Marín-Jiménez, Francisco J. Romero-Ramirez, Rafael Muñoz-Salinas, Rafael Medina-Carnicer, 3D human pose estimation from depth maps using a deep combination of poses, Journal of Visual Communication and Image Representation, Volume 55, 2018, Pages 627-639, ISSN 1047-3203, https://doi.org/10.1016/j.jvcir.2018.07.010es
dc.identifier.doi10.1016/j.jvcir.2018.07.010es
dc.identifier.issn1047-3203
dc.identifier.urihttps://hdl.handle.net/10115/42235
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International*
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.title3D human pose estimation from depth maps using a deep combination of poseses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
3D human pose.pdf
Tamaño:
1.06 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: