Self-similar solutions preventing finite time blow-up for reaction-diffusion equations with singular potential
Fecha
2023-11
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
We prove existence and uniqueness of a global in time self-similar solution growing up as t → ∞ for the
following reaction-diffusion equation with a singular potential
∂tu = ∆u^m + |x|^σ u^p
posed in dimension N ≥ 2, with m > 1, σ ∈ (−2, 0) and 1 <p< 1 − σ (m − 1)/2. For the special case
of dimension N = 1, the same holds true for σ ∈ (−1, 0) and similar ranges for m and p. The existence
of this global solution prevents finite time blow-up even with m > 1 and p > 1, showing an interesting
effect induced by the singular potential |x|^σ . This result is also applied to reaction-diffusion equations with
general potentials V (x) to prevent finite time blow-up via comparison.
Descripción
Citación
Razvan Gabriel Iagar, Ana Isabel Muñoz, Ariel Sánchez,
Self-similar solutions preventing finite time blow-up for reaction-diffusion equations with singular potential,
Journal of Differential Equations,
Volume 358,
2023,
Pages 188-217,
ISSN 0022-0396,
https://doi.org/10.1016/j.jde.2023.02.026.
Colecciones
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivs 4.0 International