Efficient dynamic resampling for dominance-based multiobjective evolutionary optimization

dc.contributor.authorCervantes, Alejandro
dc.contributor.authorQuintana, David
dc.contributor.authorRecio, Gustavo
dc.date.accessioned2024-02-08T08:20:52Z
dc.date.available2024-02-08T08:20:52Z
dc.date.issued2017
dc.description.abstractMulti-objective optimization problems are often subject to the presence of objectives that require expensive resampling for their computation. This is the case for many robustness metrics, which are frequently used as an additional objective that accounts for the reliability of specific sections of the solution space. Typical robustness measurements use resampling, but the number of samples that constitute a precise dispersion measure has a potentially large impact on the computational cost of an algorithm. This article proposes the integration of dominance based statistical testing methods as part of the selection mechanism of evolutionary multi-objective genetic algorithms with the aim of reducing the number of fitness evaluations. The performance of the approach is tested on five classical benchmark functions integrating it into two well-known algorithms, NSGA-II and SPEA2.es
dc.identifier.citationAlejandro Cervantes, David Quintana & Gustavo Recio. (2017). Efficient dynamic resampling for dominance-based multiobjective evolutionary optimization, Engineering Optimization, 49:2, 311-327es
dc.identifier.doi10.1080/0305215X.2016.1187729es
dc.identifier.issn0305-215X
dc.identifier.urihttps://hdl.handle.net/10115/29992
dc.language.isoenges
dc.publisherTaylor & Francis Onlinees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleEfficient dynamic resampling for dominance-based multiobjective evolutionary optimizationes
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
robustnessStat.pdf
Tamaño:
629.47 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: