Untrained graph neural networks for denoising

dc.contributor.authorRey, Samuel
dc.contributor.authorSegarra, Santiago
dc.contributor.authorReinhard, Heckel
dc.contributor.authorGarcia Marques, Antonio
dc.date.accessioned2024-05-06T09:41:08Z
dc.date.available2024-05-06T09:41:08Z
dc.date.issued2022-11-23
dc.description.abstractA fundamental problem in signal processing is to denoise a signal. While there are many well-performing methods for denoising signals defined on regular domains, including images defined on a two-dimensional pixel grid, many important classes of signals are defined over irregular domains that can be conveniently represented by a graph. This paper introduces two untrained graph neural network architectures for graph signal denoising, develops theoretical guarantees for their denoising capabilities in a simple setup, and provides empirical evidence in more general scenarios. The two architectures differ on how they incorporate the information encoded in the graph, with one relying on graph convolutions and the other employing graph upsampling operators based on hierarchical clustering. Each architecture implements a different prior over the targeted signals. Finally, we provide numerical experiments with synthetic and real datasets that i) asses the denoising behavior predicted by our theoretical results and ii) compare the denoising performance of our architectures with that of existing alternativeses
dc.identifier.citationS. Rey, S. Segarra, R. Heckel and A. G. Marques, "Untrained Graph Neural Networks for Denoising," in IEEE Transactions on Signal Processing, vol. 70, pp. 5708-5723, 2022, doi: 10.1109/TSP.2022.3223552es
dc.identifier.doi10.1109/TSP.2022.3223552es
dc.identifier.issn1053-587X (print)
dc.identifier.issn1941-0476 (online)
dc.identifier.urihttps://hdl.handle.net/10115/32712
dc.language.isoenges
dc.publisherInstitute of Electrical and Electronics Engineerses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleUntrained graph neural networks for denoisinges
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TSP22_GraphDeepDecoder_revised_final.pdf
Tamaño:
1.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: