Approximation via gradients on the ball. The Zernike case

dc.contributor.authorMarriaga, Misael E.
dc.contributor.authorPérez, Teresa E.
dc.contributor.authorPiñar, Miguel A.
dc.contributor.authorRecarte, Marlon J.
dc.date.accessioned2023-07-28T10:11:42Z
dc.date.available2023-07-28T10:11:42Z
dc.date.issued2023-10-01
dc.description.abstractIn this work, we deal in a d dimensional unit ball equipped with an inner product constructed by adding a mass point at zero to the classical ball inner product applied to the gradients of the functions. Apart from determining an explicit orthogonal polynomial basis, we study approximation properties of Fourier expansions in terms of this basis. In particular, we deduce relations between the partial Fourier sums in terms of the new orthogonal polynomials and the partial Fourier sums in terms of the classical ball polynomials. We also give an estimate of the approximation error by polynomials of degree at most n in the corresponding Sobolev space, proving that we can approximate a function by using its gradient. Numerical examples are given to illustrate the approximation behavior of the Sobolev basis.es
dc.identifier.citationM.E. Marriaga, T.E. Pérez, M.A. Piñar, M. J. Recarte. Approximation via gradients on the ball. The Zernike case. Journal of Computational and Applied Mathematics 430 (2023) 115258[https://doi.org/10.1016/j.cam.2023.115258]es
dc.identifier.doi10.1016/j.cam.2023.115258es
dc.identifier.issn0377-0427
dc.identifier.urihttps://hdl.handle.net/10115/24079
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectApproximation on the balles
dc.subjectinner product via gradientes
dc.subjectFourier expansionses
dc.titleApproximation via gradients on the ball. The Zernike casees
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Approximation via gradients on the ball.pdf
Tamaño:
2.03 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: