Noisy and relativistic chaotic scattering

dc.contributor.authorBernal Fernández, Juan Diego
dc.date.accessioned2023-11-07T11:21:38Z
dc.date.available2023-11-07T11:21:38Z
dc.date.issued2021
dc.descriptionTesis Doctoral leída en la Universidad Rey Juan Carlos de Madrid en 2023. Directores: Miguel Ángel Fernández Sanjuán y Jesús Miguel Seoane Sepúlvedaes
dc.description.abstractThe context of this problem takes place in the motion of a particle an the interaction with a massive object or a potential well which scatters it [4]. Generally speaking, there is a region, typically called scattering region, where the interactions between the incident particle and the massive object or the potential field occur. Nonetheless, outside the scattering region the influence over the particle is negligible and its motion is essentially free. For many applications of physical interest, the nature of that interaction implies that the equations of motion of the incident particle are nonlinear and the resulting dynamics in the scattering region is chaotic. Moreover, since the system is open, the scattering region possesses exits by which the particles may enter or escape. Due to the chaotic dynamics in the scattering region, slightly close initial conditions have trajectories which spend different lapses of time inside that region and may escape taking different directions. Quite often, particles starting in the scattering region bounce back and forth for a finite time before escaping. In this sense chaotic scattering could be presented as a physical manifestation of transient chaoses
dc.identifier.urihttps://hdl.handle.net/10115/25668
dc.language.isoenges
dc.publisherUniversidad Rey Juan Carloses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCienciases
dc.titleNoisy and relativistic chaotic scatteringes
dc.typeinfo:eu-repo/semantics/doctoralThesises

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
JDBF_thesis_DEPOSITO.pdf
Tamaño:
21.5 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones