Data-driven models of 3D avatars and clothing for virtual try-on

dc.contributor.authorSantesteban Garay, Igor
dc.date.accessioned2022-12-02T08:53:41Z
dc.date.available2022-12-02T08:53:41Z
dc.date.issued2022
dc.descriptionTesis Doctoral leída en la Universidad Rey Juan Carlos de Madrid en 2022. Directores de la Tesis: Dan Casas Guix y Miguel A. Otaduy Tristán Programa de Doctorado en Tecnologías de la Información y las Comunicacioneses
dc.description.abstractClothing plays a fundamental role in our everyday lives. When we choose clothing to buy or wear, we guide our decisions based on a combination of fit and style. For this reason, the majority of clothing is purchased at brick-and-mortar retail stores, after physical try-on to test the fit and style of several garments on our own bodies. Computer graphics technology promises an opportunity to support online shopping through virtual try-on, but to date virtual try-on solutions lack the responsiveness of a physical try-on experience. This thesis works towards developing new virtual try-on solutions that meet the demanding requirements of accuracy, interactivity and scalability. To this end, we propose novel datadriven models for 3D avatars and clothing that produce highly realistic results at a fraction of the computational cost of physics-based approaches. Throughout the thesis we also address common limitations of data-driven methods by using self-supervision mechanisms to enforce physical constraints and reduce the dependency on ground-truth data. This allows us to build efficient and accurate models with minimal preprocessing times.es
dc.identifier.urihttps://hdl.handle.net/10115/20698
dc.language.isoenges
dc.publisherUniversidad Rey Juan Carloses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectmodels of 3Des
dc.subjectavatares
dc.titleData-driven models of 3D avatars and clothing for virtual try-ones
dc.typeinfo:eu-repo/semantics/doctoralThesises

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
thesis_igor_santesteban.pdf
Tamaño:
28.29 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones