Simultaneous Determination of Furanic Compounds and Acrylamide in Insect-Based Foods by HPLC-QqQ-MS/MS Employing a Functionalized Mesostructured Silica as Sorbent in Solid-Phase Extraction
dc.contributor.author | González-Gómez, Lorena | |
dc.contributor.author | Morante-Zarcero, Sonia | |
dc.contributor.author | Pérez-Quintanilla, Damián | |
dc.contributor.author | Sierra, Isabel | |
dc.date.accessioned | 2022-06-10T06:27:07Z | |
dc.date.available | 2022-06-10T06:27:07Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Insect-based products are novel foods (NF) that merit careful study. For this reason, in this work a method has been developed for the simultaneous analysis of four food processing contaminants (FPC), acrylamide (AA), 5-hydroxymethylfurfural, (HMF), 5-methylfurfural (MF) and furfural (F), in insect-based products (bars, crackers and flours) by high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (HPLC-QqQ-MS/MS). The method consisted of a solid-liquid extraction (SLE) with acidified water, followed by solid-phase extraction (SPE), using 100 mg of a sorbent based on mesostructured silica with a large pore functionalized with amino groups (SBA-15-LP-NH2 ). The analytical method was properly optimized and validated in a representative bar sample of pineapple & coconut with cricket flour (Ins-B-Pine-Coco) showing good accuracy, with recoveries ranging from 70–101% for the four analytes and adequate precision (RSD < 9%). Good linearity (R2 ≥ 0.995) and low method quantification limits for AA (between 1.3–1.4 µg/g), F (between 7.9–8.8 µg/g), MF (between 3.1–6.5 µg/g) and HMF (between 1.5–3.3 µg/g) were also obtained in all samples studied. The proposed method was successfully applied in eleven insect-based foods. Results revealed that insect-based bars can be a good alternative to traditional cereal bars to reduce dietary exposure to HMF; but, in order to reduce the exposure to AA, alternative formulations must be evaluated in the design of innovative insect-based crackers. | es |
dc.identifier.citation | González-Gómez, L.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Simultaneous Determination of Furanic Compounds and Acrylamide in Insect-Based Foods by HPLC-QqQ-MS/MS Employing a Functionalized Mesostructured Silica as Sorbent in Solid-Phase Extraction. Foods 2021, 10, 1557. https://doi.org/ 10.3390/foods10071557 | es |
dc.identifier.doi | 10.3390/foods10071557 | es |
dc.identifier.issn | 2304-8158 | |
dc.identifier.uri | http://hdl.handle.net/10115/19510 | |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | acrylamide | es |
dc.subject | 5-hydroxymethylfurfural | es |
dc.subject | furfural | es |
dc.subject | 5-methylfurfural | es |
dc.subject | insect-based foods | es |
dc.title | Simultaneous Determination of Furanic Compounds and Acrylamide in Insect-Based Foods by HPLC-QqQ-MS/MS Employing a Functionalized Mesostructured Silica as Sorbent in Solid-Phase Extraction | es |
dc.type | info:eu-repo/semantics/article | es |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- foods-10-01557.pdf
- Tamaño:
- 1.46 MB
- Formato:
- Adobe Portable Document Format
- Descripción: