Spike propagation in a nanolaser-based optoelectronic neuron

dc.contributor.authorOrtega-Piwonka, Ignacio
dc.contributor.authorHejda, Matěj
dc.contributor.authorAlanis, Juan Arturo
dc.contributor.authorLourenço, João
dc.contributor.authorHurtado, Antonio
dc.contributor.authorFigueiredo, José
dc.contributor.authorRomeira, Bruno
dc.contributor.authorJavaloyes, Julien J. P.
dc.date.accessioned2024-01-15T15:15:32Z
dc.date.available2024-01-15T15:15:32Z
dc.date.issued2022-07-01
dc.descriptionFunding: H2020 Future and Emerging Technologies (828841); UK Research and Innovation Turing AI Acceleration Fellowshops Programme (EP/V025198/1). Acknowledgments: The authors are supported by the European Commission through the H2020-FET-OPEN Project "ChipAI". The authors also acknowledge Víctor Dolores-Calzadilla and Ekaterina Malysheva from the Eindhoven University of Technology for their fruitful contributions on nanolasers. The team at the University of Strathclyde acknowledges support from the UKRI Turing AI Acceleration Fellowships Programme. Disclosures: The authors declare no conflicts of interest. Data availability: Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.es
dc.description.abstractWith the recent development of artificial intelligence and deep neural networks, alternatives to the Von Neumann architecture are in demand to run these algorithms efficiently in terms of speed, power and component size. In this theoretical study, a neuromorphic, optoelectronic nanopillar metal-cavity consisting of a resonant tunneling diode (RTD) and a nanolaser diode (LD) is demonstrated as an excitable pulse generator. With the proper configuration, the RTD behaves as an excitable system while the LD translates its electronic output into optical pulses, which can be interpreted as bits of information. The optical pulses are characterized in terms of their width, amplitude, response delay, distortion and jitter times. Finally, two RTD-LD units are integrated via a photodetector and their feasibility to generate and propagate optical pulses is demonstrated. Given its low energy consumption per pulse and high spiking rate, this device has potential applications as building blocks in neuromorphic processors and spiking neural networks. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreementes
dc.identifier.citationIgnacio Ortega-Piwonka, Matěj Hejda, Juan Alanis, João Lourenço, Antonio Hurtado, José Figueiredo, Bruno Romeira, and Julien Javaloyes, "Spike propagation in a nanolaser-based optoelectronic neuron," Optical Materials Express 12, 2679-2696 (2022)es
dc.identifier.doi10.1364/OME.451706es
dc.identifier.issn2159-3930
dc.identifier.urihttps://hdl.handle.net/10115/28455
dc.language.isoenges
dc.publisherOptica Publishing Groupes
dc.rightsAttribution 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectIntegrated circuites
dc.subjectLaseres
dc.subjectClassificationes
dc.subjectExcitabilityes
dc.subjectThresholdes
dc.subjectPhotonicses
dc.subjectVCSELes
dc.titleSpike propagation in a nanolaser-based optoelectronic neurones
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Spike propagation in a nanolaser-based optoelectronic neuron.pdf
Tamaño:
4.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Main article

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: