A filtration associated to an abelian inner ideal of a Lie algebra
Fecha
2022
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Resumen
Let B be an abelian inner ideal and let KerL B be the kernel of B. In this paper we show
that when there exists n ∈ N with [B,KerL B]
n ⊂ B, the inner ideal B induces a bounded
filtration in L where B is the first nonzero submodule of the filtration and where the wings
of the Lie algebra associated to the filtration coincide with the subquotient determined by
B. This filtration extends the principal filtration induced by ad-nilpotent elements of index
less than or equal to three defined in
Descripción
We would like to thank the referee for his/her careful reading of the paper and his/her useful comments and remarks.
Palabras clave
Citación
Esther García, Miguel Gómez Lozano, Rubén Muñoz Alcázar, A filtration associated to an abelian inner ideal of a Lie algebra, Journal of Geometry and Physics, Volume 185, 2023, 104728, ISSN 0393-0440, https://doi.org/10.1016/j.geomphys.2022.104728
Colecciones
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional