The quest of null electromagnetics knots from Seifert fibration

dc.contributor.authorArrayás, Manuel
dc.contributor.authorTiemblo, Alfredo
dc.contributor.authorTrueba, José L.
dc.date.accessioned2023-09-25T08:24:07Z
dc.date.available2023-09-25T08:24:07Z
dc.date.issued2022
dc.descriptionThis work was funded by Universidad Rey Juan Carlos, Spain , Programa Propio: Analysis, modelling and simulations of singular structures in continuum models, M2604.es
dc.description.abstractIn this work we find new null electromagnetic fields that are exact solutions of Maxwell equations in vacuum and generalize the hopfion. The hopfion is an exact solution of Maxwell equations in vacuum in which all the field lines (both electric and magnetic) are topologically equivalent to closed and linked circles, forming a mathematical structure called Hopf fibration. Here we present a generalization to include other field lines topology, such as the Seifert fibration in which the field lines form linked torus knots. Included in this generalization are fields that ergodically fill torus surfaces.es
dc.identifier.citationManuel Arrayás, Alfredo Tiemblo, José L. Trueba, The quest of null electromagnetics knots from Seifert fibration, Chaos, Solitons & Fractals, Volume 166, 2023, 113002, ISSN 0960-0779, https://doi.org/10.1016/j.chaos.2022.113002es
dc.identifier.doi10.1016/j.chaos.2022.113002es
dc.identifier.issn0960-0779
dc.identifier.urihttps://hdl.handle.net/10115/24517
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNull fieldses
dc.subjectElectromagnetics knotses
dc.subjectSeifert fibrationes
dc.titleThe quest of null electromagnetics knots from Seifert fibrationes
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1-s2.0-S096007792201181X-main.pdf
Tamaño:
1.37 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: