Influence of the gravitational radius on asymptotic behavior of the relativistic Sitnikov problem

dc.contributor.authorBernal, Juan D.
dc.contributor.authorSeoane, Jesus
dc.contributor.authorVallejo, Juan C
dc.contributor.authorHuang, Liang
dc.contributor.authorSanjuán, Miguel A.F.
dc.date.accessioned2024-02-05T14:41:46Z
dc.date.available2024-02-05T14:41:46Z
dc.date.issued2020
dc.description.abstractThe Sitnikov problem is a classical problem broadly studied in physics which can represent an illustrative example of chaotic scattering. The relativistic version of this problem can be attacked by using the post- Newtonian formalism. Previous work focused on the role of the gravitational radius λ on the phase space portrait. Here we add two relevant issues on the influence of the gravitational radius in the context of chaotic scattering phenomena. First, we uncover a metamorphosis of the KAM islands for which the escape regions change insofar as λ increases. Second, there are two inflection points in the unpredictability of the final state of the system when λ ≃ 0.02 and λ ≃ 0.028. We analyze these inflection points in a quantitative manner by using the basin entropy. This work can be useful for a better understanding of the Sitnikov problem in the context of relativistic chaotic scattering. In addition, the described techniques can be applied to similar real systems, such as binary stellar systems, among others.es
dc.identifier.doi10.1103/PhysRevE.102.042204es
dc.identifier.urihttps://hdl.handle.net/10115/29661
dc.language.isoenges
dc.publisherAmerican Physical Societyes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subjectChaos, NonLinear Dynamicses
dc.titleInfluence of the gravitational radius on asymptotic behavior of the relativistic Sitnikov problemes
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
20bernal_PhysRevE.102.042204.pdf
Tamaño:
2.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Main Article

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: