Deep Neural Network: An Alternative to Traditional Channel Estimators in Massive MIMO Systems

dc.contributor.authorMelgar, Antonio
dc.contributor.authorde la Fuente, Alejandro
dc.contributor.authorCarro-Calvo, Leopoldo
dc.contributor.authorBarquero-Pérez, Óscar
dc.contributor.authorMorgado, Eduardo
dc.date.accessioned2024-03-11T08:32:50Z
dc.date.available2024-03-11T08:32:50Z
dc.date.issued2022-04-05
dc.description.abstractFifth-generation (5G) requires a highly accurate estimate of the channel state information (CSI) to exploit the benefits of massive multiple-input-multiple-output (MaMIMO) systems. 5G systems use pilot sequences to estimate channel behaviour using traditional methods like least squares (LS), or minimum mean square error (MMSE) estimation. However, traditional methods do not always obtain reliable estimations: LS exhibits a poor estimation when inadequate channel conditions (i.e., low- signal-to-noise ratio (SNR) region) and MMSE requires prior statistical knowledge of the channel and noise (complex to implement in practice). We present a deep learning framework based on deep neural networks (DNNs) for fifth-generation (5G) MaMIMO channel estimation. After a first preliminary scheme with which we verify the good estimation capacity of our DNN-based approach, we propose two different models, which differ in the information processed by the DNN and benefit from lower computational complexity or greater flexibility for any reference signal pattern, respectively. The results show that, compared to the LS-based channel estimation, the DNN approach decreases the mean square error (MSE) and the system’s spectral efficiency (SE) increases, especially in the low- SNR region. Our approach provides results close to optimal MMSE estimation but benefits from not requiring any prior channel statistics information.es
dc.identifier.citationA. Melgar, A. de la Fuente, L. Carro-Calvo, Ó. Barquero-Pérez and E. Morgado, "Deep Neural Network: An Alternative to Traditional Channel Estimators in Massive MIMO Systems," in IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 2, pp. 657-671, June 2022, doi: 10.1109/TCCN.2022.3164888. keywords: {Channel estimation;Estimation;OFDM;Interpolation;Deep learning;MIMO communication;Computer architecture;5G;massive MIMO;channel estimation;deep learning;deep neural networks},es
dc.identifier.doi10.1109/TCCN.2022.3164888es
dc.identifier.issn2332-7731
dc.identifier.urihttps://hdl.handle.net/10115/30852
dc.language.isoenges
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccesses
dc.subject5G , massive MIMO , channel estimation , deep learning , deep neural networkses
dc.titleDeep Neural Network: An Alternative to Traditional Channel Estimators in Massive MIMO Systemses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Deep Neural Network- An Alternative to Traditional Channel Estimators in Massive MIMO Systems - PREPRINT.pdf
Tamaño:
5.73 MB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: