Bayesian networks to predict financial distress in Spanish banking

dc.contributor.authorPaule-Vianez, Jessica
dc.contributor.authorArias-Nicolás, José Pablo
dc.contributor.authorCoca-Pérez, José Luis
dc.date.accessioned2024-07-31T06:54:29Z
dc.date.available2024-07-31T06:54:29Z
dc.date.issued2019
dc.description.abstractThis paper develops a short-term predictive model of nancial distress in Spanish banking system with Bayesian networks. As bank failures have been scarce, this document has also considered other nancial problems, encompassed under the term nancial distress, such as non-compliance with its obligations, the need for intervention by external agencies, state aid, mergers and acquisitions with problems, and liquidations. The variables used to predict nancial distress in the Spanish banking system have been nancial variables, classi ed according to the CAMELS rating system, and economic variables, whose impact on the health of these entities has been demonstrated by several previous studies. With a sample of 148 banking institutions, the high success rate obtained shows that the Bayesian networks constitute a promising methodology for predicting short-term nancial distress in the Spanish banking sector.es
dc.identifier.citationVianez, J. P., Nicolás, J. P. A., & Pérez, J. L. C. (2019). Bayesian networks to predict financial distress in spanish banking. Rect@: Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, 20(2), 131-152.es
dc.identifier.doi10.24309/recta.2019.20.2.02es
dc.identifier.issn1575-605X
dc.identifier.urihttps://hdl.handle.net/10115/39121
dc.language.isoenges
dc.publisherASEPUMAes
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectFinancial Distresses
dc.subjectBayesian modeles
dc.subjectBanking industryes
dc.subjectPredictiones
dc.subjectCAMELSes
dc.subjectSpaines
dc.titleBayesian networks to predict financial distress in Spanish bankinges
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Dialnet-BayesianNetworksToPredictFinancialDistressInSpanis-7443398 (1).pdf
Tamaño:
683.87 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: