Deep reinforcement learning for automated search of model parameters: photo-fenton wastewater disinfection case study

dc.contributor.authorHernández-García, Sergio
dc.contributor.authorCuesta-Infante, Alfredo
dc.contributor.authorMoreno-SanSegundo, José Ángel
dc.contributor.authorMontemayor, Antonio S.
dc.date.accessioned2023-09-20T07:50:56Z
dc.date.available2023-09-20T07:50:56Z
dc.date.issued2022
dc.descriptionAcknowledgements This work has been funded by Comunidad de Madrid Y2018/EMT-5062 and Ministerio de Ciencia, Innovación y Universidades RTI2018-098743-B-I00 (MICINN/FEDER), both in Spain. Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The authors did not receive support from any organization that may gain or lose financially through publication of this manuscript.es
dc.description.abstractNumerical optimization solves problems that are analytically intractable at the cost of arriving at a sufficiently good but rarely optimal solution. To maximize the result, optimization algorithms are run with the guidance and supervision of a human, usually an expert in the problem. Recent advances in deep reinforcement learning motivate interest in an artificial agent capable of learning to do the expert’s task. Specifically, we present a proximal policy optimization agent that learns to optimize in a real case study such as the modeling of the photo-fenton disinfection process, which involves a number of parameters that have to be adjusted to minimize the error of the model with respect to the experimental data collected in several trials. The expert spends an average of 4 h to find a suitable set of parameters. On the other hand, the agent we present does not require a human expert to guide or validate the optimization procedure and achieves similar results in 2:5 less time.es
dc.identifier.citationHernández-García, S., Cuesta-Infante, A., Moreno-SanSegundo, J.Á. et al. Deep reinforcement learning for automated search of model parameters: photo-fenton wastewater disinfection case study. Neural Comput & Applic 35, 1379–1394 (2023). https://doi.org/10.1007/s00521-022-07803-3es
dc.identifier.doi10.1007/s00521-022-07803-3es
dc.identifier.issn1433-3058
dc.identifier.urihttps://hdl.handle.net/10115/24398
dc.language.isoenges
dc.publisherSpringeres
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDeep reinforcement learninges
dc.subjectProximal policy optimizationes
dc.subjectWastewater disinfectiones
dc.subjectPhoto-fenton processes
dc.titleDeep reinforcement learning for automated search of model parameters: photo-fenton wastewater disinfection case studyes
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
s00521-022-07803-3.pdf
Tamaño:
2.1 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: