Rotating cluster formations emerge in an ensemble of active particles

dc.contributor.authorCantisan, Julia
dc.contributor.authorSeoane, Jesús M.
dc.contributor.authorF. Sanjuan, Miguel A.
dc.date.accessioned2023-12-12T08:38:44Z
dc.date.available2023-12-12T08:38:44Z
dc.date.issued2023
dc.description.abstractRotating clusters or vortices are formations of agents that rotate around a common center. These patterns may be found in very different contexts: from swirling fish to surveillance drones. Here, we propose a minimal model for self-propelled chiral particles with inertia, which shows different types of vortices. We consider an attractive interaction for short distances on top of the repulsive interaction that accounts for volume exclusion. We study cluster formation and we find that the cluster size and clustering coefficient increase with the packing of particles. Finally, we classify three new types of vortices: encapsulated, periodic and chaotic. These clusters may coexist and their proportion depends on the density of the ensemble. The results may be interesting to understand some patterns found in nature and to design agents that automatically arrange themselves in a desired formation while exchanging only relative information.es
dc.identifier.citationJulia Cantisán, Jesús M. Seoane, Miguel A.F. Sanjuán, Rotating cluster formations emerge in an ensemble of active particles, Chaos, Solitons & Fractals, Volume 172, 2023, 113531, ISSN 0960-0779, https://doi.org/10.1016/j.chaos.2023.113531. (https://www.sciencedirect.com/science/article/pii/S0960077923004320) Abstract: Rotating clusters or vortices are formations of agents that rotate around a common center. These patterns may be found in very different contexts: from swirling fish to surveillance drones. Here, we propose a minimal model for self-propelled chiral particles with inertia, which shows different types of vortices. We consider an attractive interaction for short distances on top of the repulsive interaction that accounts for volume exclusion. We study cluster formation and we find that the cluster size and clustering coefficient increase with the packing of particles. Finally, we classify three new types of vortices: encapsulated, periodic and chaotic. These clusters may coexist and their proportion depends on the density of the ensemble. The results may be interesting to understand some patterns found in nature and to design agents that automatically arrange themselves in a desired formation while exchanging only relative information. Keywords: Active particles; Cluster; Collective motion; Chiralityes
dc.identifier.doi10.1016/j.chaos.2023.113531es
dc.identifier.issn0960-0779
dc.identifier.urihttps://hdl.handle.net/10115/27118
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleRotating cluster formations emerge in an ensemble of active particleses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Rotating clusters-version aceptada.pdf
Tamaño:
4.37 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: