Massive MIMO Channel Estimation With Convolutional Neural Network Structures

dc.contributor.authorCarro-Calvo, Leopoldo
dc.contributor.authorde la Fuente, Alejandro
dc.contributor.authorMelgar, Antonio
dc.contributor.authorMorgado, Eduardo
dc.date.accessioned2024-09-11T12:02:19Z
dc.date.available2024-09-11T12:02:19Z
dc.date.issued2024-07-29
dc.description.abstractMassive multiple-input-multiple-output (mMIMO) enables a significant increase in capacity in fifth-generation (5G) communications systems, both in beamforming and spatial multiplexing scenarios, demanding highly accurate channel estimates. We present two models based on convolutional neural networks (CNNs) for 5G mMIMO channel estimation that differ in complexity and flexibility. The results achieved with both models are competitive compared to traditional methods, such as least squares (LS) which presents a poor estimate in the low signal-to-noise ratio (SNR) region, or minimum mean square error (MMSE) which requires prior statistical knowledge of the channel and noise estimation. Furthermore, the proposed CNN models outperform estimation structures based on conventional deep neural networks (DNNs). Our approach achieves results close to the MMSE estimates, improving them in the low SNR regime, and enabling them to a wide range of channel conditions, i.e., variability in time, frequency, and SNR, not requiring any prior channel statistics information. Furthermore, we present a deep analysis of the computational and cost complexity, demonstrating the suitability of the proposed models for real hardware structure implementationes
dc.identifier.citationL. Carro-Calvo, A. d. l. Fuente, A. Melgar and E. Morgado, "Massive MIMO Channel Estimation With Convolutional Neural Network Structures," in IEEE Transactions on Cognitive Communications and Networking, doi: 10.1109/TCCN.2024.3435478es
dc.identifier.doi10.1109/TCCN.2024.3435478es
dc.identifier.issn2332-7731 (online)
dc.identifier.urihttps://hdl.handle.net/10115/39477
dc.language.isoenges
dc.publisherInstitute of Electrical and Electronics Engineerses
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectChannel estimationes
dc.subjectOFDMes
dc.subjectConvolutional neural networkses
dc.subject5G mobile communicationes
dc.subjectEstimationes
dc.subjectSymbolses
dc.subjectSignal to noise ratioes
dc.titleMassive MIMO Channel Estimation With Convolutional Neural Network Structureses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Massive_MIMO_Channel_Estimation_With_Convolutional_Neural_Network_Structures.pdf
Tamaño:
1.09 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: