DC Neural Networks avoid overfitting in one-dimensional nonlinear regression
dc.contributor.author | Beltran-Royo, C. | |
dc.contributor.author | Llopis-Ibor, L. | |
dc.contributor.author | Ramirez, I. | |
dc.contributor.author | Pantrigo, J.J. | |
dc.date.accessioned | 2024-09-16T10:38:22Z | |
dc.date.available | 2024-09-16T10:38:22Z | |
dc.date.issued | 2024-01-11 | |
dc.description.abstract | In this paper, we analyze Difference of Convex Neural Networks in the context of one-dimensional nonlinear regression. Specifically, we show the surprising ability of the Difference of Convex Multilayer Perceptron (DC-MLP) to avoid overfitting in nonlinear regression. Otherwise said, DC-MLPs self-regularize (do not require additional regularization techniques). Thus, DC-MLPs could result very useful for practical purposes based on one-dimensional nonlinear regression. It turns out that shallow MLPs with a convex activation (ReLU, softplus, etc.) fall in the class of DC-MLPs. On the other hand, we call SQ-MLP the shallow MLP with a Squashing activation (logistic, hyperbolic tangent, etc.). In the numerical experiments, we show that DC-MLPs used for nonlinear regression avoid overfitting, in contrast with SQ-MLPs. We also compare DC-MLPs and SQ-MLPs from a theoretical point of view | es |
dc.identifier.citation | Cesar Beltran-Royo, Laura Llopis-Ibor, Juan J. Pantrigo, Iván Ramírez, DC Neural Networks avoid overfitting in one-dimensional nonlinear regression, Knowledge-Based Systems, Volume 283, 2024, 111154, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2023.111154 | es |
dc.identifier.doi | 10.1016/j.knosys.2023.111154 | es |
dc.identifier.issn | 0950-7051 (print) | |
dc.identifier.issn | 1872-7409 (online) | |
dc.identifier.uri | https://hdl.handle.net/10115/39554 | |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights | Attribution-NonCommercial-NoDerivs 4.0 International | |
dc.rights.accessRights | info:eu-repo/semantics/embargoedAccess | es |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.title | DC Neural Networks avoid overfitting in one-dimensional nonlinear regression | es |
dc.type | info:eu-repo/semantics/article | es |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 24DC_NN_KBS.pdf
- Tamaño:
- 29.71 MB
- Formato:
- Adobe Portable Document Format
- Descripción: