DC Neural Networks avoid overfitting in one-dimensional nonlinear regression

dc.contributor.authorBeltran-Royo, C.
dc.contributor.authorLlopis-Ibor, L.
dc.contributor.authorRamirez, I.
dc.contributor.authorPantrigo, J.J.
dc.date.accessioned2024-09-16T10:38:22Z
dc.date.available2024-09-16T10:38:22Z
dc.date.issued2024-01-11
dc.description.abstractIn this paper, we analyze Difference of Convex Neural Networks in the context of one-dimensional nonlinear regression. Specifically, we show the surprising ability of the Difference of Convex Multilayer Perceptron (DC-MLP) to avoid overfitting in nonlinear regression. Otherwise said, DC-MLPs self-regularize (do not require additional regularization techniques). Thus, DC-MLPs could result very useful for practical purposes based on one-dimensional nonlinear regression. It turns out that shallow MLPs with a convex activation (ReLU, softplus, etc.) fall in the class of DC-MLPs. On the other hand, we call SQ-MLP the shallow MLP with a Squashing activation (logistic, hyperbolic tangent, etc.). In the numerical experiments, we show that DC-MLPs used for nonlinear regression avoid overfitting, in contrast with SQ-MLPs. We also compare DC-MLPs and SQ-MLPs from a theoretical point of viewes
dc.identifier.citationCesar Beltran-Royo, Laura Llopis-Ibor, Juan J. Pantrigo, Iván Ramírez, DC Neural Networks avoid overfitting in one-dimensional nonlinear regression, Knowledge-Based Systems, Volume 283, 2024, 111154, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2023.111154es
dc.identifier.doi10.1016/j.knosys.2023.111154es
dc.identifier.issn0950-7051 (print)
dc.identifier.issn1872-7409 (online)
dc.identifier.urihttps://hdl.handle.net/10115/39554
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleDC Neural Networks avoid overfitting in one-dimensional nonlinear regressiones
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
24DC_NN_KBS.pdf
Tamaño:
29.71 MB
Formato:
Adobe Portable Document Format
Descripción: