On the automatic generation of metaheuristic algorithms for combinatorial optimization problems

dc.contributor.authorMartín-Santamaría, Raúl
dc.contributor.authorLópez-Ibáñez, Manuel
dc.contributor.authorStützle, Thomas
dc.contributor.authorColmenar, J. Manuel
dc.date.accessioned2024-06-25T10:08:26Z
dc.date.available2024-06-25T10:08:26Z
dc.date.issued2024
dc.descriptionThis work has been partially supported by the Spanish Ministerio de Ciencia e Innovación (MCIN/AEI/10.13039/501100011033) under grant ref. PID2021-126605NB-I00 and by ERDF A way of making Europe; and Generalitat Valenciana with grant ref. CIAICO/2021/224. Thomas Stützle acknowledges support from the Belgian F.R.S. -FNRS of which he is a Research Director.es
dc.description.abstractMetaheuristic algorithms have become one of the preferred approaches for solving optimization problems. Finding the best metaheuristic for a given problem is often difficult due to the large number of available approaches and possible algorithmic designs. Moreover, high-performing metaheuristics often combine general-purpose and problem-specific algorithmic components. We propose here an approach for automatically designing metaheuristics using a flexible framework of algorithmic components, from which algorithms are instantiated and evaluated by an automatic configuration method. The rules for composing algorithmic components are defined implicitly by the properties of each algorithmic component, in contrast to previous proposals, which require a handwritten algorithmic template or grammar. As a result, extending our framework with additional components, even problem-specific or user-defined ones, automatically updates the design space. Furthermore, since the generated algorithms are made up of components, they can be easily interpreted. We provide an implementation of our proposal and demonstrate its benefits by outperforming previous research in three distinct problems from completely different families: a facility layout problem, a vehicle routing problem and a clustering problem.es
dc.identifier.citationRaúl Martín-Santamaría, Manuel López-Ibáñez, Thomas Stützle, J. Manuel Colmenar, On the automatic generation of metaheuristic algorithms for combinatorial optimization problems, European Journal of Operational Research, 2024, , ISSN 0377-2217, https://doi.org/10.1016/j.ejor.2024.06.001es
dc.identifier.doi10.1016/j.ejor.2024.06.001es
dc.identifier.issn1872-6860
dc.identifier.urihttps://hdl.handle.net/10115/34931
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMetaheuristicses
dc.subjectMethodologyes
dc.subjectReproducibilityes
dc.subjectAutomatic configurationes
dc.titleOn the automatic generation of metaheuristic algorithms for combinatorial optimization problemses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1-s2.0-S0377221724004296-main.pdf
Tamaño:
861.96 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: