Time series cluster kernel for learning similarities between multivariate time series with missing data

dc.contributor.authorMikalsen, Karl Øyvind
dc.contributor.authorBianchi, Filippo Maria
dc.contributor.authorSoguero-Ruiz, Cristina
dc.contributor.authorJenssen, Robert
dc.date.accessioned2024-01-08T09:16:56Z
dc.date.available2024-01-08T09:16:56Z
dc.date.issued2018-04
dc.descriptionÍndice de impacto: Scopus: Q1, T1, P4, Rank 7/189, Computer Vision and Pattern Recognition WoS: Q1, T1, D1, P91, Rank 25/263, Engineering, Electrical and Electronices
dc.description.abstractSimilarity-based approaches represent a promising direction for time series analysis. However, many such methods rely on parameter tuning, and some have shortcomings if the time series are multivariate (MTS), due to dependencies between attributes, or the time series contain missing data. In this paper, we address these challenges within the powerful context of kernel methods by proposing the robust time series cluster kernel (TCK). The approach taken leverages the missing data handling properties of Gaussian mixture models (GMM) augmented with informative prior distributions. An ensemble learning approach is exploited to ensure robustness to parameters by combining the clustering results of many GMM to form the final kernel. We evaluate the TCK on synthetic and real data and compare to other state-of-the-art techniques. The experimental results demonstrate that the TCK is robust to parameter choices, provides competitive results for MTS without missing data and outstanding results for missing data.es
dc.identifier.citationKarl Øyvind Mikalsen, Filippo Maria Bianchi, Cristina Soguero-Ruiz, Robert Jenssen, Time series cluster kernel for learning similarities between multivariate time series with missing data, Pattern Recognition, Volume 76, 2018, Pages 569-581, ISSN 0031-3203,es
dc.identifier.doi10.1016/j.patcog.2017.11.030es
dc.identifier.issn0031-3203
dc.identifier.urihttps://hdl.handle.net/10115/28208
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMultivariate time serieses
dc.subjectSimilarity measureses
dc.subjectKernel methodses
dc.subjectMissing dataes
dc.subjectGaussian mixture modelses
dc.subjectEnsemble learninges
dc.titleTime series cluster kernel for learning similarities between multivariate time series with missing dataes
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
document_journal_new.pdf
Tamaño:
1.13 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: