Thermochemical Energy Storage Using the Phase Transitions Brownmillerite-2H Perovskite - Cubic Perovskite in the CaxSr1-xCoO3-δ (x=0 and 0.5) System
dc.contributor.author | Azcondo, Maria Teresa | |
dc.contributor.author | Orfila, Maria | |
dc.contributor.author | Linares, Maria | |
dc.contributor.author | Molina, Raul | |
dc.contributor.author | Marugan, Javier | |
dc.contributor.author | Amador, Ulises | |
dc.contributor.author | Boulahya, Khalid | |
dc.contributor.author | Botas, Juan Angel | |
dc.contributor.author | Sanz, Raul | |
dc.date.accessioned | 2025-01-24T07:53:08Z | |
dc.date.available | 2025-01-24T07:53:08Z | |
dc.date.issued | 2021-08-09 | |
dc.description | The authors thank “Comunidad de Madrid” and European Structural Funds for its financial support to ACES2030-CM project (S2018/EMT-4319). We also thank the Spanish MICINN and the Agencia Estatal de Investigación (AEI) / Fondo Europeo de Desarrollo Regional (FEDER/UE) for funding the Project PID2019-106662RB-C41. UA and MTA thank USP CEU for financial support. | |
dc.description.abstract | The oxides Ca0.5Sr0.5CoO3−δ and SrCoO3−δ, which present perovskite or perovskite-related phases in different temperature domains, have been tested as materials for thermochemical energy storage. The first one, Ca0.5Sr0.5CoO3−δ, experiences a reversible phase transition upon consecutive cycles under an airflow at a maximum operating temperature of 1196 K. Unfortunately, the heat stored in this process, associated with an oxygen loss/gain and a structural phase transition, is very small, hindering its use for thermochemical heat storage. The as-prepared oxide SrCoO3−δ, which displays a brownmillerite structure like the Ca-containing compound, in the first heating step irreversibly segregates some Co3O4 at 823 K to yield a 2H hexagonal perovskite. This phase reversibly transforms at 1073 K into a cubic perovskite. These 2H ⇄ C transitions occur from the 2nd to, at least, 30th cycle. The average absorbed and released heat is ∼104.1 ± 0.06 and ∼68.8 ± 1.8 J/g, respectively, and therefore, SrCoO3−δ presents a high exo/endo ratio. The exergy efficiency is, on average for the 30 cycles performed, as high as 63.9 ± 1.2%. The mechanism of the phase 2H ⇄ C transition of SrCoO3−δ explains the good performance of this material for thermochemical energy storage. | |
dc.identifier.citation | Thermochemical Energy Storage Using the Phase Transitions Brownmillerite -2H Perovskite - Cubic Perovskite in the CaxSr1–xCoO3−δ (x = 0 and 0.5) System. M. Teresa Azcondo, María Orfila, María Linares, Raúl Molina, Javier Marugán, Ulises Amador, Khalid Boulahya, Juan Ángel Botas, and Raúl Sanz. ACS Applied Energy Materials 2021 4 (8), 7870-7881. DOI: 10.1021/acsaem.1c01235 | |
dc.identifier.doi | https://doi.org/10.1021/acsaem.1c01235 | |
dc.identifier.issn | 2574-0962 | |
dc.identifier.uri | https://hdl.handle.net/10115/62160 | |
dc.language.iso | en | |
dc.publisher | American Chemical Association | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.subject | Thermochemical energy storage | |
dc.subject | Perovskite | |
dc.subject | Brownmillerite | |
dc.subject | Cyclability | |
dc.subject | Thermal hysteresis | |
dc.subject | Structural transition | |
dc.subject | Redox processes | |
dc.title | Thermochemical Energy Storage Using the Phase Transitions Brownmillerite-2H Perovskite - Cubic Perovskite in the CaxSr1-xCoO3-δ (x=0 and 0.5) System | |
dc.type | Article |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- ACS Applied Energy Materials 2021.pdf
- Tamaño:
- 1.38 MB
- Formato:
- Adobe Portable Document Format