Thermochemical Energy Storage Using the Phase Transitions Brownmillerite-2H Perovskite - Cubic Perovskite in the CaxSr1-xCoO3-δ (x=0 and 0.5) System

dc.contributor.authorAzcondo, Maria Teresa
dc.contributor.authorOrfila, Maria
dc.contributor.authorLinares, Maria
dc.contributor.authorMolina, Raul
dc.contributor.authorMarugan, Javier
dc.contributor.authorAmador, Ulises
dc.contributor.authorBoulahya, Khalid
dc.contributor.authorBotas, Juan Angel
dc.contributor.authorSanz, Raul
dc.date.accessioned2025-01-24T07:53:08Z
dc.date.available2025-01-24T07:53:08Z
dc.date.issued2021-08-09
dc.descriptionThe authors thank “Comunidad de Madrid” and European Structural Funds for its financial support to ACES2030-CM project (S2018/EMT-4319). We also thank the Spanish MICINN and the Agencia Estatal de Investigación (AEI) / Fondo Europeo de Desarrollo Regional (FEDER/UE) for funding the Project PID2019-106662RB-C41. UA and MTA thank USP CEU for financial support.
dc.description.abstractThe oxides Ca0.5Sr0.5CoO3−δ and SrCoO3−δ, which present perovskite or perovskite-related phases in different temperature domains, have been tested as materials for thermochemical energy storage. The first one, Ca0.5Sr0.5CoO3−δ, experiences a reversible phase transition upon consecutive cycles under an airflow at a maximum operating temperature of 1196 K. Unfortunately, the heat stored in this process, associated with an oxygen loss/gain and a structural phase transition, is very small, hindering its use for thermochemical heat storage. The as-prepared oxide SrCoO3−δ, which displays a brownmillerite structure like the Ca-containing compound, in the first heating step irreversibly segregates some Co3O4 at 823 K to yield a 2H hexagonal perovskite. This phase reversibly transforms at 1073 K into a cubic perovskite. These 2H ⇄ C transitions occur from the 2nd to, at least, 30th cycle. The average absorbed and released heat is ∼104.1 ± 0.06 and ∼68.8 ± 1.8 J/g, respectively, and therefore, SrCoO3−δ presents a high exo/endo ratio. The exergy efficiency is, on average for the 30 cycles performed, as high as 63.9 ± 1.2%. The mechanism of the phase 2H ⇄ C transition of SrCoO3−δ explains the good performance of this material for thermochemical energy storage.
dc.identifier.citationThermochemical Energy Storage Using the Phase Transitions Brownmillerite -2H Perovskite - Cubic Perovskite in the CaxSr1–xCoO3−δ (x = 0 and 0.5) System. M. Teresa Azcondo, María Orfila, María Linares, Raúl Molina, Javier Marugán, Ulises Amador, Khalid Boulahya, Juan Ángel Botas, and Raúl Sanz. ACS Applied Energy Materials 2021 4 (8), 7870-7881. DOI: 10.1021/acsaem.1c01235
dc.identifier.doihttps://doi.org/10.1021/acsaem.1c01235
dc.identifier.issn2574-0962
dc.identifier.urihttps://hdl.handle.net/10115/62160
dc.language.isoen
dc.publisherAmerican Chemical Association
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectThermochemical energy storage
dc.subjectPerovskite
dc.subjectBrownmillerite
dc.subjectCyclability
dc.subjectThermal hysteresis
dc.subjectStructural transition
dc.subjectRedox processes
dc.titleThermochemical Energy Storage Using the Phase Transitions Brownmillerite-2H Perovskite - Cubic Perovskite in the CaxSr1-xCoO3-δ (x=0 and 0.5) System
dc.typeArticle

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
ACS Applied Energy Materials 2021.pdf
Tamaño:
1.38 MB
Formato:
Adobe Portable Document Format