Approximation by polynomials in Sobolev spaces associated with classical moment functionals
dc.contributor.author | García-Ardila, Juan Carlos | |
dc.contributor.author | Marriaga, Misael E. | |
dc.date.accessioned | 2023-07-28T10:03:36Z | |
dc.date.available | 2023-07-28T10:03:36Z | |
dc.date.issued | 2023-05-02 | |
dc.description.abstract | Let u be a moment functional associated with the Hermite, Laguerre, or Jacobi classical orthogonal polynomials. We study approximation by polynomials in Hr(u), the Sobolev space consisting of functions whose derivatives of consecutive orders up to r belong to the L2 space associated with u. This requires the simultaneous approximation of a function f and its consecutive derivatives up to order N⩽r. We explicitly construct orthogonal polynomials that achieve such simultaneous approximation and provide error estimates in terms of En(f(r)), the error of best approximation of f(r) in L2(u). | es |
dc.identifier.citation | García-Ardila, J.C., Marriaga, M.E. Approximation by polynomials in Sobolev spaces associated with classical moment functionals. Numer Algor (2023). | es |
dc.identifier.doi | 10.1007/s11075-023-01572-3 | es |
dc.identifier.issn | 1572-9265 | |
dc.identifier.uri | https://hdl.handle.net/10115/24078 | |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights | Attribution 4.0 Internacional | * |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Simultaneous approximation | es |
dc.subject | Sobolev spaces | es |
dc.subject | linear functionals | es |
dc.title | Approximation by polynomials in Sobolev spaces associated with classical moment functionals | es |
dc.type | info:eu-repo/semantics/article | es |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Approximation by polynomials in Sobolev spaces associated with classical moment functionals.pdf
- Tamaño:
- 551.89 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.67 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: