Approximation by polynomials in Sobolev spaces associated with classical moment functionals

dc.contributor.authorGarcía-Ardila, Juan Carlos
dc.contributor.authorMarriaga, Misael E.
dc.date.accessioned2023-07-28T10:03:36Z
dc.date.available2023-07-28T10:03:36Z
dc.date.issued2023-05-02
dc.description.abstractLet u be a moment functional associated with the Hermite, Laguerre, or Jacobi classical orthogonal polynomials. We study approximation by polynomials in Hr(u), the Sobolev space consisting of functions whose derivatives of consecutive orders up to r belong to the L2 space associated with u. This requires the simultaneous approximation of a function f and its consecutive derivatives up to order N⩽r. We explicitly construct orthogonal polynomials that achieve such simultaneous approximation and provide error estimates in terms of En(f(r)), the error of best approximation of f(r) in L2(u).es
dc.identifier.citationGarcía-Ardila, J.C., Marriaga, M.E. Approximation by polynomials in Sobolev spaces associated with classical moment functionals. Numer Algor (2023).es
dc.identifier.doi10.1007/s11075-023-01572-3es
dc.identifier.issn1572-9265
dc.identifier.urihttps://hdl.handle.net/10115/24078
dc.language.isoenges
dc.publisherSpringeres
dc.rightsAttribution 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSimultaneous approximationes
dc.subjectSobolev spaceses
dc.subjectlinear functionalses
dc.titleApproximation by polynomials in Sobolev spaces associated with classical moment functionalses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Approximation by polynomials in Sobolev spaces associated with classical moment functionals.pdf
Tamaño:
551.89 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: