Automatic MoM Source Integral Quadrature Selection via a Machine Learning Approach

dc.contributor.authorMartin, Victor F.
dc.contributor.authorRicci, Marco
dc.contributor.authorWilton, Donald R.
dc.contributor.authorJohnson, William A.
dc.contributor.authorVipiana, Francesca
dc.date.accessioned2025-01-30T08:05:20Z
dc.date.available2025-01-30T08:05:20Z
dc.date.issued2024
dc.description.abstractIn this paper, a new technique, based on machine learning (ML) and dimensionality reduction, is proposed for drastically improving the performance in the evaluation of the singular and near singular potential integrals in the method of moments (MoM). The MoM source surface integral is first reduced to a line integral via a dimensionality reduction method, and, then, an ML algorithm is trained on a set of line integrals evaluated with Gauss-Legendre (GL) quadrature schemes of different orders. Finally, the trained ML algorithm is used to determine the minimum number of GL sample points and weights required for each potential line integral to get the requested accuracy.
dc.identifier.citationV. F. Martin, M. Ricci, D. R. Wilton, W. A. Johnson and F. Vipiana, "Automatic MoM Source Integral Quadrature Selection via a Machine Learning Approach," 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, United Kingdom, 2024, pp. 1-3, doi: 10.23919/EuCAP60739.2024.10501619.
dc.identifier.doi10.23919/EuCAP60739.2024.10501619
dc.identifier.isbn978-88-31299-09-1
dc.identifier.isbn979-8-3503-9443-6
dc.identifier.urihttps://hdl.handle.net/10115/70418
dc.language.isoen
dc.publisherEuropean Conference on Antennas and Propagation, EuCAP
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccess
dc.subjectsurface integral equations
dc.subjectmethod of moments
dc.subjectmachine learning
dc.subjectdimensionality reduction
dc.titleAutomatic MoM Source Integral Quadrature Selection via a Machine Learning Approach
dc.typeOther

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Automatic_MoM_Source_Integral_Quadrature_Selection_via_a_Machine_Learning_Approach.pdf
Tamaño:
239.42 KB
Formato:
Adobe Portable Document Format