Oxygenated compounds derived from glycerol for biodiesel formulation: Influence on EN 14214 quality parameters

dc.contributor.authorMelero, Juan A.
dc.contributor.authorVicente, Gemma
dc.contributor.authorMorales, Gabriel
dc.contributor.authorPaniagua, Marta
dc.contributor.authorBustamante, Javier
dc.date.accessioned2010-06-21T11:13:40Z
dc.date.available2010-06-21T11:13:40Z
dc.date.issued2010
dc.description.abstractThe methyl esters of fatty acids (biodiesel) obtained via transesterification of vegetable oils or animal fats are an alternative to current fossil fuels. A large amount of glycerol as a by-product is generated in this process and new applications for this surplus need to be found. Thus, the transformation of glycerol into branched oxygen-containing compounds could be an interesting solution to provide an outlet for increasing glycerol stocks. In this work, several oxygenated compounds, obtained by transformation of glycerol via etherification, esterification and acetalisation, have been assessed as components for biodiesel formulation. Different quality parameters have been evaluated following the procedures listed in the EN 14214 European Standard for biodiesel specifications. These parameters have been correlated with the amount of oxygenated derivate present in the biodiesel. The best performance as component for biodiesel formulation has been achieved by the mixture of ethers produced via etherification of glycerol with isobutylene. The addition of these compounds has not only improved the low temperature properties of biodiesel (i.e. pour point and cold filter plugging point) and viscosity, but also did not impair other important biodiesel quality parameters analyzed. Although most of the studied oxygenated derivates do not significantly improve any biodiesel property, they do not exert a significant negative effect either. Furthermore, all of them allow an enhancement of overall yield in the biodiesel production. Nevertheless, further improvement could be addressed with a better purification to reduce the presence of non-desired impurities such as diisobutylenes and unreacted acetic acid, which have a negative influence especially in acid number and oxidation stability.es
dc.description.departamentoTecnología Química y Ambiental
dc.identifier.citationFuel 89 (2010) 2011-2018es
dc.identifier.doi10.1016/j.fuel.2010.03.042es
dc.identifier.urihttp://hdl.handle.net/10115/4025
dc.language.isoenes
dc.publisherELSEVIERes
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectEnergías Renovableses
dc.subject.unesco2510.91 Recursos Renovableses
dc.titleOxygenated compounds derived from glycerol for biodiesel formulation: Influence on EN 14214 quality parameterses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Fuel 89 (2010) 2011-2018.pdf
Tamaño:
320.14 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.11 KB
Formato:
Item-specific license agreed upon to submission
Descripción: