Support Vector Method for Robust ARMA System Identification

Resumen

This paper presents a new approach to auto-regressive and moving average (ARMA) modeling based on the support vector method (SVM) for identification applications. A statistical analysis of the characteristics of the proposed method is carried out. An analytical relationship between residuals andSVM-ARMA coefficients allows the linking of the fundamentals of SVM with several classical system identification methods. Additionally, the effect of outliers can be cancelled. Application examples show the performance of SVM-ARMA algorithm when it is compared with other system identification methods.

Descripción

Palabras clave

Citación

license logo
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España