Bootstrap Feature Selection in Support Vector Machines for Ventricular Fibrillation Detection

dc.contributor.authorAlonso Atienza, Felipe
dc.contributor.authorRojo-Álvarez, José Luis
dc.contributor.authorCamps Valls, Gustavo
dc.contributor.authorRosado Muñoz, A
dc.contributor.authorGarcía Alberola, A
dc.date.accessioned2009-07-23T11:01:23Z
dc.date.available2009-07-23T11:01:23Z
dc.date.issued2009-07-23T11:01:23Z
dc.description.abstractSupport Vector Machines (SVM) for classification are being paid special attention in a number of practical applications. When using nonlinear Mercer kernels, the mapping of the input space to a highdimensional feature space makes the input feature selection a difficult task to be addressed. In this paper, we propose the use of nonparametric bootstrap resampling technique to provide with a statistical, distribution independent, criterion for input space feature selection. The confidence interval of the difference of error probability between the complete input space and a reduced-in-one-variable input space, is estimated via bootstrap resampling. Hence, a backward variable elimination procedure can be stated, by removing one variable at each step according to its associated confidence interval. A practical example application to early stage detection of cardiac Ventricular Fibrillation (VF) is presented. Basing on a previous nonlinear analysis based on temporal and spectral VF parameters, we use the SVM with Gaussian kernel and bootstrap resampling to provide with the minimum input space feature set that still holds the classification performance of the complete data. The use of bootstrap resampling is a powerful input feature selection procedure for SVM classifiers.es
dc.description.departamentoTeoría de la Señal y Comunicaciones
dc.identifier.issn2-930307-06-4
dc.identifier.urihttp://hdl.handle.net/10115/2498
dc.language.isoenes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectTelecomunicacioneses
dc.subject.unesco3325 Tecnología de las Telecomunicacioneses
dc.subject.unesco3205.01 Cardiologíaes
dc.titleBootstrap Feature Selection in Support Vector Machines for Ventricular Fibrillation Detectiones
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Bootstrap Feature Selection in Support Vector machines for ventricular fibrillation detection.pdf
Tamaño:
374.73 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.11 KB
Formato:
Item-specific license agreed upon to submission
Descripción: