Support Vector Machines Framework for Linear Signal Processing
Fecha
2009-07-23T09:14:14Z
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
This paper presents a support vector machines (SVM) framework to deal with linear signal processing (LSP) problems. The approach relies on three basic steps for model building: (1) identifying the suitable base of the Hilbert signal space in the model, (2) using a robust cost function, and (3) minimizing a constrained, regularized functional by means of the method of Lagrange multipliers. Recently, autoregressive moving average (ARMA) system identification and non-parametric spectral analysis have been formulated under this framework. The generalized, yet simple,
formulation of SVM LSP problems is particularized here for three different issues: parametric spectral estimation,
stability of Infinite Impulse Response filters using the gamma structure, and complex ARMA models for communication applications. The good performance shown on these different domains suggests that other signal processing problems can be stated from this SVM framework.
Descripción
Palabras clave
Citación
Colecciones
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España