Sample Selection Via Clustering to Construct Support Vector-Like Classifiers

dc.contributor.authorLyhyaoui, Abdelouahid
dc.contributor.authorMartínez Ramón, M
dc.contributor.authorMora Jiménez, Inma
dc.contributor.authorVázquez Castro, M.A
dc.contributor.authorSancho Gómez, JL
dc.contributor.authorFigueiras Vidal, Aníbal R
dc.date.accessioned2009-07-29T15:18:19Z
dc.date.available2009-07-29T15:18:19Z
dc.date.issued2009-07-29T15:18:19Z
dc.description.abstractThis paper explores the possibility of constructing RBF classifiers which, somewhat like support vector machines, use a reduced number of samples as centroids, by means of selecting samples in a direct way. Because sample selection is viewed as a hard computational problem, this selection is done after a previous vector quantization: this way obtaining also other similar machines using centroids selected from those that are learned in a supervised manner. Several forms of designing these machines are considered, in particular with respect to sample selection; as well as some different criteria to train them. Simulation results for well-known classification problems show very good performance of the corresponding designs, improving that of support vector machines and reducing substantially their number of units. This shows that our interest in selecting samples (or centroids) in an efficient manner is justified. Many new research avenues appear from these experiments and discussions, as suggested in our conclusions.es
dc.description.departamentoTeoría de la Señal y Comunicaciones
dc.identifier.issn1045-9227
dc.identifier.urihttp://hdl.handle.net/10115/2593
dc.language.isoenes
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectTelecomunicacioneses
dc.subject.unesco3325 Tecnología de las Telecomunicacioneses
dc.subject.unesco1203.17 Informáticaes
dc.titleSample Selection Via Clustering to Construct Support Vector-Like Classifierses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Sample Selection Via Clustering to Construct.pdf
Tamaño:
128.13 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.1 KB
Formato:
Item-specific license agreed upon to submission
Descripción: